期刊文献+

融合视觉模型和最大熵的阈值分割算法 被引量:4

Image Thresholding Segmentation Based on Human Vision Model and Maximum Entropy
下载PDF
导出
摘要 针对传统二维最大熵阈值分割算法关于二维直方图的区域划分中存在的缺点(即图像的部分目标点和背景点错误划分为边缘点或噪声点,而把部分边缘点和噪声点划分为目标点和背景点),以及搜索最佳阈值向量的时间复杂度较高,提出了采用视觉模型构造二维直方图,并提出了一种二维直方图的新的区域划分方法;同时还提出了基于视觉模型的二维最大熵阈值分割算法,提出的阈值分割算法降低了计算复杂度的同时还具有很好的分割性能。根据一些图像分割的定量评价标准,做了一系列实验,与几种典型的二维阈值分割算法相比,提出算法的分割效果更好。 The traditional twodimensional image thresholding segmentation algorithms exist some shortcomings that are the area division of twodimensional histogram ( Part of the target points and background points is divided into edge points or noise points, while part of the edge points and noise points is divided into the target point and background points) and high time complexity of searching the best threshold vector, a new twodimensional histo gram is proposed by using human vision model, and a new region division method about twodimensional histogram is proposed, and the same time image thresholding segmentation based on human vision model and maximum entro py is proposed, the proposed image thresholding segmentation algorithm reduces the time complexity and has good segmentation performance. According to some evaluation standards for image segmentation result, a series of experi ments show the proposed algorithm has better segmentation effect compared with several typical twodimensional threshold segmentation algorithms.
出处 《科学技术与工程》 北大核心 2013年第6期1496-1501,1514,共7页 Science Technology and Engineering
基金 国家自然科学基金项目(60975083 61272338)资助
关键词 视觉模型 图像分割 阈值选取 最大类间方差法 human visual model image segmentation threshold selection maximum entropy
  • 相关文献

参考文献11

二级参考文献29

  • 1吴一全,朱兆达.图像处理中阈值选取方法30年(1962—1992)的进展(二)[J].数据采集与处理,1993,8(4):268-282. 被引量:96
  • 2刘健庄,栗文青.灰度图象的二维Otsu自动阈值分割法[J].自动化学报,1993,19(1):101-105. 被引量:356
  • 3张天序.一种新的边缘检测计算模型和算法[J].自动化学报,1994,20(4):436-444. 被引量:8
  • 4WANG Shitong, CHUANG Fulai, XIONG Fusong. A novel image thresholding method based on Parzen window estimate [J]. Pattern Recognition, 2008, 41(1): 117-129. 被引量:1
  • 5DAVIES E R. Stable bi-level and multi-level thresholding of images using a new global transformation [J]. IET Computer Vision, 2008, 2(2): 60-74. 被引量:1
  • 6HAMMOUCHE K, DIAF M, SIARRY P. A multilevel automatic threshotding method based on a genetic algorithm for a fast image segmentation [J]. Computer Vision and Image Understanding, 2008, 109(2): 163- 175. 被引量:1
  • 7ALBUQUERQUE MP, ESQUEF I A. Image segmentation using non-extensive relative entropy [J]. IEEE Latin America Transactions, 2009, 6(5): 477-483. 被引量:1
  • 8BARDERA A, BOADA I, FEIXAS M, SBERT M. Image segmentation using excess entropy [J]. Journal of Signal Processing Systems, 2009, 54(1-3): 205-214. 被引量:1
  • 9LI C H, LEE C K. Minimum cross entropy thresholding [J]. Pattern Recognition, 1993, 26(4): 617-625. 被引量:1
  • 10BRINK n D, PENDOCK N E. Minimum cross-entropy threshold selection [J]. Pattern Recognition, 1996, 29(1): 179-189. 被引量:1

共引文献467

同被引文献43

  • 1郭海涛,王连玉,田坦,张春田,孙鹤泉.利用二维属性直方图的Otsu自动阈值分割方法[J].光电子.激光,2005,16(6):739-742. 被引量:18
  • 2杜峰,施文康,邓勇,朱振幅.一种快速红外图像分割方法[J].红外与毫米波学报,2005,24(5):370-373. 被引量:31
  • 3朱桂英,张瑞林.信息熵在图像处理中的应用[J].丝绸,2006,43(12):34-36. 被引量:7
  • 4王艳娟,陈晓红,邹丽.图像感兴趣区域自动提取算法[J].科学技术与工程,2007,7(12):2867-2871. 被引量:13
  • 5周学成,罗锡文,严小龙,等.基于遗传算法的原位根系CT图像的模糊阈值分割[J].中国图像图形学报,2009,14(4):681-687. 被引量:2
  • 6Lan JH, Zeng YL. Multi-threshold image segmentation using maximum fuzzy entropy based on a new 2D histogram [J]. Optik-International Journal for Light and Electron Optics, 2013, 124 (18): 7563760. 被引量:1
  • 7Hoang NL, Hai TN, Chang WA. Entropybased efficiency en- hancement techniques for evolutionary algorithms [J]. Infor- mation Science, 2011, 12 (4): 1-21. 被引量:1
  • 8Mehdi S, Hassan S, Aria A. Minimum entropy control of chaos via online partiele swarm optimization method [J]. Applied Mathematical Modeling, 2011, 10 (5): 1-10. 被引量:1
  • 9Pedram G, Micael SC, Jon AB, et al. An efficient method for segmentation of images based on fractional calculus and natural seleetion [J]. Expert Systems with Applications, 2012, 39 (16): 12407-12417. 被引量:1
  • 10Fan Songhai, Yang Shuhong. Infrared electric image segmen- tation using fuzzy renyi entropy and chaos differential evolution algorithm [J]. Proceedings of Future Computer Sciences and Application, 2011: 220-223. 被引量:1

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部