摘要
在亚BCI-代数中引入了I-V模糊子代数的概念,讨论了亚BCI-代数的I-V模糊子集成为I-V模糊子代数的充分必要条件.证明了亚BCI-代数的所有子代数都可以看成是I-V模糊子代数的水平集子代数.最后,给出了由亚BCI-代数的I-V模糊子代数构造新的I-V模糊子代数的方法.
The purpose of this paper is to define the notion of an interval-valued fuzzy subalgebra ( briefly, an I-V fuzzy subalge- bra) of a sub-BCI-algebra. Necessary and sufficient conditions for an I-V fuzzy set to be an I-V fuzzy subalgebra are discussed. It is proved that all subalgebra of a sub-BCI-algebra ean be realized as an I-V level subset of an I-V fuzzy subalgebra of sub-BCI-algebra. A method making a new I-V fuzzy subalgebra from old one is given.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第1期48-51,共4页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(81160183)资助项目