摘要
由于双基合成孔径雷达回波信号中,其斜距历程为两个根号和,故信号在二维频率域或者距离多普勒域的表达式无法通过驻定相位点原理解析得到.针对这个问题,将此驻定相位点表示为方位频率的泰勒级数,并且称该方法为隐函数导数法.通过代数计算,可以得到平行等速双基合成孔径雷达构型下的二维频谱.应用该方法,可以将斜距历程中的双根号变成单根号,这对后续的成像算法是有帮助的.然后,基于这个频谱,改进的距离多普勒算法被用于处理平行等速双基合成孔径雷达数据,同时得到相应的成像处理结果.仿真实验和实测数据处理验证了该处理方法的有效性.
There are two square-root terms in the range history of a return signal from a Bistatic Synthetic Aperture Radar(BiSAR).The transfer function for imaging in the 2-D frequency or range Doppler domain using the principle of stationary phase cannot be analytically derived.To address this problem,we approximate the stationary phase of the 2-D spectrum with an expansion of the Taylor series at the azimuth frequency,and call the approximation the derivatives of an implicit function.After algebraic manipulation,the 2-D spectrum is obtained for an azimuth invariant BiSAR.With the proposed method we dissolve one square-root term out of two for an azimuth invariant BiSAR,which is especially advantageous in implementation of an imaging algorithm.Then,a modified Range Doppler Algorithm(RDA) is developed to process the BiSAR data.The promising results of simulation and real data processing are obtained.
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2013年第1期100-104,140,共6页
Journal of Xidian University
基金
国家自然科学基金资助项目(60890072)
关键词
平行等速双基合成孔径雷达
隐函数导数法
距离多普勒算法
azimuth invariant bistatic synthetic aperture radar
the derivatives of an implicit function
range Doppler algorithm