期刊文献+

Risk-Identification-Based Hybrid Method for Estimating the System Reliability of Existing Jacket Platforms Under Fire 被引量:1

Risk-Identification-Based Hybrid Method for Estimating the System Reliability of Existing Jacket Platforms Under Fire
原文传递
导出
摘要 This paper proposes a risk-identification-based hybrid method for estimating the system reliability of steel jacket structures under fire.The proposed method starts with risk identification;according to the results of hazard identification and Dow’s fire and explosion index(F&EI) methodology,the most dangerous hazard sources are determined.In term of each equipment layout in steel jacket structures,fire load is imposed and elasto-plastic analysis is performed.According to the deformed state of steel jacket structures,the weakest failure mode of steel jacket structures is identified.In order to know the effect on ultimate bearing capacity of the offshore structural system,a series of elasto-plastic analyses are performed in which single failure element contained in the weakest failure mode is removed from the whole offshore platform structural system.Finally,the failure function of the steel jacket structure is generated and the failure probability of the steel jacket structure system is estimated under fire by genetic algorithm via MATLAB program. This paper proposes a risk-identification-based hybrid method for estimating the system reliability of steel jacket structures under fire. The proposed method starts with risk identification; according to the results of hazard identification and Dow's fire and explosion index (F&EI) methodology, the most dangerous hazard sources are determined. In term of each equipment layout in steel jacket structures, fire load is imposed and elasto-plastic analysis is performed. According to the deformed state of steel jacket structures, the weakest failure mode of steel jacket structures is identified. In order to know the effect on ultimate bearing capacity of the offshore structural system, a series of elasto-plastic analyses are performed in which single failure element contained in the weakest failure mode is removed from the whole offshore platform structural system. Finally, the failure function of the steel jacket structure is generated and the failure probability of the steel jacket structure system is estimated under fire by genetic algorithm via MATLAB program.
出处 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第1期70-75,共6页 上海交通大学学报(英文版)
基金 the National High Technology Research and Development Program(863) of China (No.2007AA09Z322) the Independent Research Project of the State Key Laboratory of Ocean Engineering of Shanghai Jiaotong University(No.GKZD010049)
  • 相关文献

参考文献2

二级参考文献17

共引文献24

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部