期刊文献+

基于支持向量机的电力系统不良数据在线检测辨识与修正 被引量:2

Online Detection,Identification and Correction for Bad Data of Power System Based on Support Vector Machine
下载PDF
导出
摘要 SVM是数据挖掘中一种具有优良模式识别性能的新方法,该方法具有学习速度快、全局最优和泛化能力强等优点。首先利用支持向量机回归(SVR)构建辨识遥测不良数据的模型,在状态估计前通过比较预测值与实测值之间的差值来一次性辨识遥测不良数据。接着将状态估计后得到的标准残差作为支持向量机分类(SVC)的输入,依靠拓扑错误的残差特性来分类辨识出拓扑错误。通过对IEEE-30母线的仿真分析证明了该方法的有效性,现行状态估计器的效率及合格率可以得到很好的提高。 SVM is a new method with excellent pattern recognition properties in data mining, which has the advantages of fast learning, global optimum and high generalization. Firstly, support vector machine regression is utilized to establish the identi-fication model for the telemetric bad data, which compares the differences between the predicted values and the measured values before state estimation. Then the obtained standard residuals after state estimation are used as the input of SVC classification, and the topology error is identified based on the characteristics of these residuals. The efficiency of the proposed method is proven by the simulation analysis of IEEE -30 bus model, thus the efficiency and the percent of pass of the existing state estimators can be highly improved.
作者 包永金
机构地区 宜宾电业局
出处 《四川电力技术》 2013年第1期59-63,共5页 Sichuan Electric Power Technology
关键词 不良数据 电力系统状态估计 检测辨识 支持向量机 bad data power system state estimation detection and identification support vector machine
  • 相关文献

参考文献14

  • 1ALi Abur,Antonin Gómez Expósito. Power System State Estimation:Theory and Implementation[M].New York,USA:Marcel Dekker,Inc,2004. 被引量:1
  • 2L.Mili,Th Van Cutsem,M.Ribbens Pavella. Hypothesis Testing Identification:A New Method for Bad Data Analysis in Power System State Estimation[J].IEEE Transactions on Power Apparatus and Systems,1984,(11):3239-3252. 被引量:1
  • 3L.Mili,Th.Van Cutsem. Implementation of HTI Method in Power System State Estimation[J].IEEE Transactions on Power Systems,1988,(03):887-889. 被引量:1
  • 4Salehfar H,Zhao R. A Neural Network Preestimation Filter for Bad Data Detection ad Identification in Power System State Estimation[J].Electric Power Systems Research,1995,(09):127-134. 被引量:1
  • 5J.C.S.Souza,A.M.Leite da Silva,A.P.Alves da Silva. Online Topology Determination and Bad Data Suppression in Power System Operation Using Artificial Neural Networks[J].IEEE Transactions on Power Systems,1998,(03):796-803.doi:10.1109/59.708645. 被引量:1
  • 6S.P.Teeuwsen. Neural Network Based Multi-dimensional Feature Forecasting for Bad Data Detection and Feature Restoration in Power System[A].2006.18-22. 被引量:1
  • 7D.Singh,J.P.Pandey,D.S.Chauhan. Topology Identification,Bad Data Processing,and State Estimation Using Fuzzy Pattern Matching[J].IEEE Transactions on Power Delivery,2005,(03). 被引量:1
  • 8Huang SJ,Lin JM. Enhancement of Power System Data Debugging Using GSA-based Data Mining Technique[J].IEEE Transactions on Power Systems,2002,(04):1022-1029.doi:10.1109/TPWRS.2002.804992. 被引量:1
  • 9Vapnik V. The Nature of Statistical Learning Theory[M].New York:springer-verlag,1995.138-145. 被引量:1
  • 10F.Pérez-Cruz,G.Camps,E.Soria,J.Pérez,A.R.Figueiras Vidal, A.Artés-Rodríguez. Multi-dimensional Function Approximation and Regression Estimation[A].Madrid,Spain,2002. 被引量:1

二级参考文献14

  • 1张兴民,毛玉华,朱剑峰,马昭彦.利用图论方法进行多不良数据检测与辨识[J].中国电机工程学报,1997,17(1):69-72. 被引量:29
  • 2Tibshirini R,Walther G,Hastie T.Estimating the number of cluster in a dataset via the gap statistic[R].Unpublished Technical Report:Stanford University,2000:1-18. 被引量:1
  • 3YuHui Luo,Jonathon C.Active source selection using gap statistic for underdetermined blind source separation[C].Signal Processing and Its Applications 2003 Proceedings,Seventh International Sympsium,Paris,France,2003:137-140. 被引量:1
  • 4S J Huang,Jeu Min Lin.Enhancement of power system data debugging using GSA-based data-mining technique[J].IEEE Transactions on power system,2002,17(11):1022-1029. 被引量:1
  • 5张斌.基于GSA的数据挖掘在电力系统不良数据辨识中的应用[D].南京:南京理工大学,2003. 被引量:3
  • 6史光荣,黄世杰,林矩民.应用间隙统计法为辅之资料探勘技术于不良资料之检测[R].国立成功大学技术报告,2003. 被引量:1
  • 7Souza J C,Silva A P.Data visualization and identification of anomalies in power system state estimation using artificial neural networks[J].Eng.Gen.Transm.dist.,1997,44 (9):445-455. 被引量:1
  • 8S J Huang,Jeu Min Lin.Artificial Neural Network Enhanced by Gap Statistic Algorithm Applied for Bad Data Detection of a Power System[C].Transmission and Distribution Conference and Exhibition 2002,Tokyo,Japan,2002:764-768.. 被引量:1
  • 9Salehfar H,Zhao R.A neural network pre-estimation filter for bad-data detection and identification in power system state estimation[J].Electric power system research.1995,34 (8):127-134. 被引量:1
  • 10李钊年.电力系统状态估计中的不良数据辨识[J].青海大学学报(自然科学版),2001,19(1):49-51. 被引量:9

共引文献25

同被引文献16

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部