期刊文献+

MA-Datafly:一种支持多属性泛化的k-匿名方法 被引量:6

MA-Datafly:k-anonymity approaches for supporting multi-attribute generalization
下载PDF
导出
摘要 Datafly算法是数据发布环境下保护数据隐私的一种k-匿名方法,实现k-匿名时只对准标识符属性集中属性值种类最多的属性进行归纳。当准标识符属性集中只有一个属性的取值多样而其他属性取值具有同质性时,该算法可行。实际应用中数据的取值却往往不具有这种特点。针对这个问题,提出一种自底向上的支持多属性归纳k-匿名算法,并对该算法进行实验测试,结果表明该算法能有效降低原始数据的信息损失并能提高匿名化处理效率。 Datafly algorithm is an k-anonymity method for protecting data privacy in privacy preserving data publishing, the most frequent attribute of quasi-identifier attributes is generalized when realizing k-anonymity. Datafly algorithm can be execut- ed when the values of an attribute of quasi-identifiers are diversity and the values of the other attributes are homogeneity. How- ever, the character is impossible in practical applications. According to the problem, an bottom-up generalization algorithm for supporting multi-attribute is building. Experimental results demonstrate that the developed algorithm is efficient for solving in- formation loss and elapsed time.
出处 《计算机工程与应用》 CSCD 2013年第4期138-140,196,共4页 Computer Engineering and Applications
基金 国家自然科学基金项目(No.60873024) 湖北省自然科学基金项目(No.2009CDB293) 智能机器人湖北省重点实验室开放基金项目
关键词 K-匿名 微数据 隐私保护 域泛化等级 k-anonymity microdata privacy preserving domain generalization hierarchy
  • 相关文献

参考文献4

  • 1Sweeney L.K-anonymity: a model for protecting privacy[].International Journal on UncertaintyFuzziness and Knowledge-Based Systems.2002 被引量:1
  • 2Machanavajjhala A,Gehrke J,Kifer D,et al.l-diversity:Pri-vacy beyondk-anonymity[].Proceedings of the th International Conference on Data Engineering.2006 被引量:1
  • 3LeFevre K,DeWitt D J,Ramakrishnan R.Incognito:Efficient Full Domain K-Anonymity[].Proc of the ACM SIGMOD Conference on Management of Data(SIGMOD).2005 被引量:1
  • 4Raymond Chi-Wing Wong,Li J,Ada Wai-Chee Fu,et al.(.α,k)-Anonymity:an enhanced k-anonymity model for privacy-preserving data publishing[].Proc of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(SIGKDD).2006 被引量:1

同被引文献35

  • 1张鹏,童云海,唐世渭,杨冬青,马秀莉.一种有效的隐私保护关联规则挖掘方法[J].软件学报,2006,17(8):1764-1774. 被引量:53
  • 2Sweeney L. k-anonymity: a model for protecting privacy[J]. Int J Uncertain Fuzz, 2002, 10 (5): 557. 被引量:1
  • 3Samarati P, Sweeney L. Protecting privacy when disclosing information..kIAnonymity and its enforce- ment through generalization and suppression [R/ OL]. (1998-04-20). [2013-08-23] . http..//www. cse. iitb. ac. in/dbms/Data/Courses/CS632/2007/ Papers/kanon-samarati. pdf. 被引量:1
  • 4Sweeney L. Achieving k-anonymity privacy protec- tion using generalization and suppression[J]. Int J Uncertain Fuzz, 2002, 10(5), 571. 被引量:1
  • 5Samarati P, Sweeney L. Generalizing data to pro- vide anonymity when disclosing information [C]// Proceedings of the 17th ACM SIGMOD SIGACT- SIGART Symposium on the Principles of Database Systems. Seattle, WA, USA:ACM Press, 1998. 被引量:1
  • 6Terrovitis M, Mamoulis N, Kalnis P. Anonymity in unstructured data[R]. Hong Kong: Hong Kong U- niversity, 2008. 被引量:1
  • 7Sweeney L. Guaranteeing anonymity when sharing medical data, the Datafly system[C]. Washington, DC.. Hanley & Belfus, Inc, 1997: 51. 被引量:1
  • 8LeFevre K, DeWitt D J, Ramakrishnan R. Incogni- to: efficient full-domain k-anonymity [ C]//ACM SIGMOD International Conference on Management of Data. Baltimore, USA.. ACM Press, 2005. 被引量:1
  • 9LeFevre K, DeWitt D J, Ramakrishnan R. Mondri- an multidimensional K-Anonymity [C]. Washing- ton, USA: IEEE Computer Society, 2006. 被引量:1
  • 10Meyerson A, Williams R. On the complexity of op- timal K-anonymity[C]// Proceedings of the 23th ACM SIGMOD SIGACT-SIGART Symposium on the Principles of Database Systems. New York, USA:ACM Press, 2004. 被引量:1

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部