期刊文献+

严重拖尾复合高斯杂波中目标的自适应极化检测 被引量:7

Adaptive Polarimetric Detection of Targets in Heavy-tailed Compound-Gaussian Clutter
下载PDF
导出
摘要 该文研究极化高分辨雷达在动态变化的杂波场景中自适应检测小目标的问题。将统计特性严重拖尾的杂波建模为纹理分量为逆伽马分布的复合高斯过程,借助于广义似然比检验和辅助数据得到了自适应极化检测器,并推导了该检测器的虚警概率表达式,证明了该检测器对协方差矩阵结构具有恒虚警特性。最后,利用仿真杂波数据验证了检测器检测性能的有效性。 The problem of detecting a weak target in dynamic clutter scenarios is analyzed with a polarimetric high-resolution radar. The heavy-tailed clutter is modeled by the compound-Gaussian process with inverse Gamma distributed texture. With training data to estimate covariance matrix of clutter, an adaptive polarimetric detector based on generalized likelihood ratio test criterion is presented for this heavy-tailed compound-Gaussian clutter. Then, the analytic expression of false alarm is derived to prove its constant false alarm rate property with respect to the clutter covariance matrix. The simulation results confirm the effectiveness of the proposed detector.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第2期376-380,共5页 Journal of Electronics & Information Technology
基金 山东省自然科学基金(ZR2012FQ007)资助课题
关键词 目标检测 极化 复合高斯 逆伽马分布 Target detection Polarization Compound-Gaussian Inverse Gamma distribution
  • 相关文献

参考文献12

  • 1Fayard P,Field T R. Inference of a generalized texture for a compound-Gaussian clutter[J].IET Radar Sonar & Navigation,2010,(02):187-194. 被引量:1
  • 2谢洪森,邹鲲.一种非均匀场景复合高斯杂波下的自适应检测器[J].电子与信息学报,2011,33(10):2433-2437. 被引量:5
  • 3Balleri A,Nehorai A,Wang J. Maximum likelihood estimation for compound-Gaussian clutter with inverse gamma texture[J].IEEE Transactions on Aerospace and Electronic Systems,2007,(02):775-780. 被引量:1
  • 4Stinco P;Greco M;Gini F.Adaptive detection in compound-Gaussian clutter with inverse-Gamma texture[A]四川成都,2011434-437. 被引量:1
  • 5Conte E,De Maio A,Galdi C. Statistical analysis of real clutter at different range resolutions[J].IEEE Transactions on Aerospace and Electronic Systems,2004,(03):903-918.doi:10.1109/TAES.2004.1337463. 被引量:1
  • 6Shang X,Song H. Radar detection based on compoundGaussian model with inverse gamma texture[J].IET Radar Sonar & Navigation,2011,(03):315-321. 被引量:1
  • 7Sangston K J,Gerlach K R. Coherent detection of radar targets in a non-Gaussian background[J].IEEE Transactions on Aerospace and Electronic Systems,1994,(02):330-340.doi:10.1109/7.272258. 被引量:1
  • 8Park H R,Li J,Wang H. Polarization-space-time domain generalized likelihood ratio detection of radar targets[J].Signal Processing,1995,(02):153-164.doi:10.1016/0165-1684(94)00097-J. 被引量:1
  • 9Sangton K J,Gini F,Greco M S. Coherent radar target detection in heavy-tailed compound-Gaussian clutter[J].IEEE Transactions on Aerospace and Electronic Systems,2012,(01):64-77. 被引量:1
  • 10王鞠庭,江胜利,刘中.复合高斯杂波中MIMO雷达DOA估计的克拉美-罗下限[J].电子与信息学报,2009,31(4):786-789. 被引量:5

二级参考文献32

  • 1Lehmann N H, Fishler E, and Haimovich A M, et al.. Evaluation of transmit diversity in MIMO-radar direction finding [J]. IEEE Trans. on SP, 2007, 55(5): 2215-2225. 被引量:1
  • 2Wang J, Dogandzic A, and Nehorai A. Maximum likelihood estimation of compound-gaussian clutter and target parameters [J]. IEEE Trans. on SP, 2006, 54(10): 3884-3898. 被引量:1
  • 3Balleri A, Nehorai A, and Wang J. Maximum likelihood estimation for compound-gaussian clutter with inverse gamma texture [J]. IEEE Trans. on AES, 2007, 43(2): 775-779. 被引量:1
  • 4Gini F, Montanari M, and Verrazzani L. Estimation of chirp radar signals in compound-gaussian clutter: A cyclostationary approach [J]. IEEE Trans. on SP, 2000, 48(4): 1029-1039. 被引量:1
  • 5Gini F and Reggiannini R. On the use of cramer-rao-like bounds in the presence of random nuisance parameters[J]. IEEE Trans. on Comm, 2000, 48(12): 2120-2126. 被引量:1
  • 6Kay S M. Fundamentals of Statistical Signal Processing: Estimation Theory. Englewood Cliffs, NJ: Prentice-Hall, 1993, Chapter 15. 被引量:1
  • 7Bekkerman I and Tabrikian J. Target detection and localization using MIMO radars and sonars [J]. IEEE Trans. on SP, 2006, 54(10): 3873-3883. 被引量:1
  • 8Li J and Stoica P. MIMO radar with colocated antennas IEEE SP Mag. [J]. 2007, 25(1): 106-114. 被引量:1
  • 9Fishler E, Haimovich A, and Blum R, et al.. MIMO radar: An idea whose time has come[C]. Proc. IEEE Radar Conf., Philadelphia, United States, Apr. 2004: 71-78. 被引量:1
  • 10Fishler E, Haimovich A, and Blum R, et al.. Spatial diversity in radars-Models and detection performance[J]. IEEE Trans. on SP, 2006, 54(3): 823-838. 被引量:1

共引文献16

同被引文献66

  • 1罗贤云,孙芳,尹志盈,温芳茹,王荫槐.雷达地杂波的测试与分析[J].现代雷达,1994,16(4):10-23. 被引量:16
  • 2柏跃迁.正态均值线性估计的可容许性[J].重庆工商大学学报(自然科学版),2007,24(5):445-447. 被引量:4
  • 3WANG J, ALEKSANDAR D, and ARYE N. Maximum Likelihood Estimation of Compound-Gaussian Clutter and Target Parameters[J]. IEEE Transactions on Signal Pro- cessing, 2006, 54( 10): 3884-3898. 被引量:1
  • 4BALLERI A, NEHORAI A, and WANG J. Maximum Like- lihood Estimation for Compound-Gathssian Clutter with In- verse Gamma Texture [ J ]. IEEE Transactions on Aerospace and Electronic Systems,2007,43(02) :775-780. 被引量:1
  • 5YING Wen-wei, JIANG Yuzhong, and IJU Yue-liang, et al. A Blind Receiver with Multiple Antennas in Impul- sive Noise Modeled as the Suh-Gaussian Distribution via the MCMC Algorithm[ J]. IEEE Transactions on Vehicu- lar Technology, 2013, 62(07): 3492-3497. 被引量:1
  • 6LIU B, CIIEN Biao, and JAMES H M. A GLRT for Ra- dar Deteetion in the Presenee of Compound-Gaussian Clutter and Additive White Gaussian Noise [ C ]// Sensor Array and Muhichannel Signal Processing Workshop Pro- ceedings. USA : IEEE ,2002:87-91. 被引量:1
  • 7ESA O, DAVID E T, and VISA K, et al. Compound- Gaussian Clutter Modeling with An Inverse Gaussian Tex- ture Distribution [ J ]. IEEE Signal Processing Letters, 2012, 19(12) : 876-879. 被引量:1
  • 8CHEN Sijia, KONG Lingjiang, and YANG Jianyu. A- daptive Detection in Compound-Gaussian Clutter with In- verse Gaussian Texture[ J ]. Progress in Electromagnetics Research M ,2013 ( 28 ) : 157-167. 被引量:1
  • 9PENG Geng, HUANG Zhitao, and WANG Fcnghua, ct al. Single Channel Blind Signal Separation with Bayes- ian-MCMC [ C ]// Wireless Communications & Signal Processing. China : IEEE ,2009 : 1-4. 被引量:1
  • 10ANTHONY L, CHRISTOPHER Y, and MICHAEl. B G, et al. On the Utility of Graphics Cards to Perform Massively Parallel Simulation of Advanced Monte Carlo Methods [ J ] Journal of Computational and Graphical Statistics ,2010,19(04) :769-789. 被引量:1

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部