摘要
R称为左伪morphic环,若对任意的a∈R,存在b,c∈R使得Ra=l(b),Rb=l(c),其中l(b),l(c)表示R中元素b且c的左零化子.本文主要研究R[D,C]环的伪morphic性,证明了环R[D,C]是左伪morphic的当仅当(1)D是左伪morphic环;(2)对任意的x∈C,存在y∈C使得Cx=lC(y),Dx=lD(y).受文[2]的启发,定义了左[D,C]-伪morphic元,并研究了这类元素的性质.
A ring R is called left pseudo-morphic if for everya∈ R,there exist b,c∈ R such that Ra =l(b),Rb =l(c),wherel(b),l(c)denote the left annihilator of b,c in R.In this paper,we characterize the pseudo-morphic properties of R[ D,C] rings.It is shown that R[ D,C] is aleft pseudo-morphic ring if and only if (1)D is a left pseudo-morphic ring;(2)for any x∈ C,there exissty∈ C such that Cx =lC(y) and Dx =lD(y).By idea from [2],we define left R[ D,C]-pseudo morphic element.Further more,we discuss the properties of these elements.
出处
《安徽师范大学学报(自然科学版)》
CAS
北大核心
2012年第3期211-213,217,共4页
Journal of Anhui Normal University(Natural Science)
基金
安徽省教育厅重点研究项目(KJ2010A126)
安徽师范大学专项基金(2008xzx10)