摘要
本文研究了一类拟线性椭圆方程,其中非线性项f在无穷远处(p 1)-次线性增长,非线性项g在无穷远处超线性增长.利用三临界点定理,获得了该类方程多重解的存在性,结果推广了Kristaly等人最近的相关结果.
In this paper, we establish the existence of multiple solutions for an equation involving a quasilinear elliptic operator, where the nonlinearity f has a (p- 1)-sublinear growth at infinity and nonlinearity g is superlinear at infinity. Using a three critical points theorem, we prove the existence of at least two distinct weak solutions to this problem, which extends the recent results established by Kristaly et al..
出处
《数学杂志》
CSCD
北大核心
2013年第1期6-14,共9页
Journal of Mathematics
基金
Supported by the Youth Foundation of Hubei Engineering University(Z2012003)
关键词
拟线性椭圆方程
三临界点定理
多重解
凹凸非线性项
quasilinear elliptic equation
three critical points theorem
multiple solutions
concave-convex nonlinearities