期刊文献+

基于KSVD与MCA的图像修复技术研究 被引量:4

Image Inpainting based on KSVD and MCA
原文传递
导出
摘要 图像修复是对图像中破损区域进行信息填充,以减少图像破损所带来的信息损失的过程。传统的图像修复方法需要依赖图像的具体结构来制定相应的修复方法,压缩感知理论的提出,使得可以利用信号的稀疏性来对图像进行修复。基于K奇异值分解(KSVD)与形态学成分分析(MCA,MorphologicalComponent Analysis)的图像修复方法首先采用形态学成分分析方法对破损图像进行特征分析,将其分解为结构部分和纹理部分;然后基于学习型字典KSVD分别对这两部分进行过完备字典训练;最后利用训练得到的字典实现对破损图像的修复。相比于传统的图像修复方法,该方法具有适应性强、修复效果好等优点。 Image inpainting is to fill the missing data in corrupted images and thus to reduce the information loss of damaged image. Traditional inpainting algorithms are dependent on specific structure of target images compressive sensing theory makes is possible to realized image inpainting with signal sparsity. This paper proposes a novel inpainting algorithm based on KSVD and MCA algorithm, which first decomposes the image into texture part and structure part, and then trains the two dictionaries for these two parts with KSVD and reconstructs the original image with these two trained dictionaries. Experiment indicates that the proposed algorithm is of better adaptabiIity and performance as compared with traditional algorithms.
出处 《通信技术》 2013年第2期22-25,共4页 Communications Technology
基金 信息网络安全公安部重点实验室(公安部第三研究所)开放基金资助课题(C12608)
关键词 K奇异值分解 形态学成分分析 压缩感知 图像修复 KSVD MCA compressive sensing image inpainting
  • 相关文献

参考文献11

二级参考文献18

  • 1赵向坡,刘新.下一代视频标准H.264中的图象的变换和量化[J].通信技术,2003,36(10):10-12. 被引量:3
  • 2[1]Meyer F G.Fast Adaptive Wavelet Packet Image Compression [J].IEEE Transaction on Signal Processing,2000,9(5):792-800 被引量:1
  • 3[3]Said A,Pearlman W A.A new fast and efficient image coding based on set partition in hierarchical trees [J].IEEE Trans Circuits and System Video,1996,6(6):243-250 被引量:1
  • 4[1]Ralf Schafer,Thomas Wiegan,Herko Schwarz.H.264/AVC standard.2003.1. 被引量:1
  • 5[2]Thomas Wiegand,Heiko Schwarz,Faouzi Kossentini.Rate-Constrained Coder Control and Comparison of Video Coding Standards.2003.7. 被引量:1
  • 6[3]Thomas Wiegand.Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification.2003.5. 被引量:1
  • 7[4]ITU-T.Video Coding for Very Low Bitrate Communication.Versionl,1995,version 2,1998. 被引量:1
  • 8[5]Stephan Wenger.A New Error Resilience Tool for H.26L.2002.2. 被引量:1
  • 9[6]Bend Girod.Error-resilient Video.2002.5. 被引量:1
  • 10[7]A H Sadka 著,卢燕飞,尉明明,蒋笑冰,译.压缩视频通信.科学出版社.2004. 被引量:1

共引文献15

同被引文献43

  • 1王志鹏,张桂戌.基于分组行进算法的图像修补方法[J].中国图象图形学报,2007,12(5):799-804. 被引量:1
  • 2张平,檀结庆,何蕾.基于离散小波变换的图像修补方法[J].计算机应用研究,2007,24(9):287-289. 被引量:9
  • 3Bertalmio M, Sapiro G, Caselles V, et al. Image inpainting[ C ]//Proceedings of the 27th Annual Conference on Computer Graphics and Inter- active Techniques. NewYork, USA : ACM Press/Addison-Wesley Publishing Co. , 2000 : 417 - 424. 被引量:1
  • 4Chan T F, Shen J. Nontexture inpainting by curvature-driven diffusions [ J ]. Journal of Visual Communication and Image Representation, 2001, 12(4) : 436 -449. 被引量:1
  • 5Shen J, Chan T F. Mathematical models for local nontexture inpaintings[ J]. SIAM Journal on Applied Mathematics, 2002, 62 (3) : 1019 - 1043. 被引量:1
  • 6Chan T F, Kang S H, Shen J. Euler's elastica and curvature-based inpainting[ J]. SIAM Journal on Applied Mathematics, 2002, 62 ( 1 ) : 564 - 592. 被引量:1
  • 7Esedoglu S, Shen J. Digital inpainting based on the Mumford-Shall-Euler image model[ J]. European Journal of Applied Mathematics, 2002, 13(4) : 353 -370. 被引量:1
  • 8Wong A, Orchard J. A nonloeal-means approach to exemplar-based inpainting[ C ]//15th IEEE International Conference on Image Processing. Piseataway, N J, USA: IEEE, 2008 : 2600 - 2603. 被引量:1
  • 9I-Jan Y, Shi P. An adaptive level-selecting wavelet transform for texture defect detection [ J ]. Image and Vision Computing, 2007, 25 (8) :1239 -1248. 被引量:1
  • 10Liu J, Moulin P. Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients [ J ]. IEEE Trans- actions on Image Processing, 2001, 10 (11 ) : 1647 -1658. 被引量:1

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部