期刊文献+

非精确概率下基于证据理论的典型系统可靠性模型 被引量:7

Reliability Model of Typical Systems for Imprecise Probability Using Evidence Theory
下载PDF
导出
摘要 当系统的各个单元的失效概率为不精确概率时,传统的概率方法难以使用,而区间分析法等非概率方法得到的结果则比较粗糙。基于证据理论,建立了非精确概率下串联、并联、串并混联、k-out-of-n等典型系统的可靠性模型,利用信任函数和似然函数、根据证据推理,将单元可靠性中的不确定性传递到顶层系统,从而得出系统失效概率和可靠度的概率分布的上下界。实例分析表明,提出的方法能较好的处理可靠性计算中的不精确信息,且比区间分析法得到的有效信息更多。 In the situation that unit failure probability is imprecise when calculation the reliability of system, classical probability method is not applicable, and the analysis result of non-probability method is too coarse. To calculate the reliability of series-parallel systems in the above situation, D-S evidence theory was used to represent the unit failure probability. Belief and plausibility function were used to calculate the reliability of series and parallel systems by evidential reasoning. By this mean, lower and upper bounds of probability distribution of system failure probability were obtained. Simulation results show that the proposed method is preferable to deal with the imprecise probability in reliability calculation, and can get additional information when compare with interval analysis method.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第2期317-321,共5页 Journal of System Simulation
基金 十一五国防重点预研项目(426010501 51305060204)
关键词 可靠性 不确定性 非精确概率 证据理论 reliability uncertainty imprecise probability evidence theory
  • 相关文献

参考文献13

  • 1Weidong Wu,S S Rao. Uncertainty analysis and allocation of joint tolerances in robot manipulators based on interval analysis[J].Reliability Engineering and System Safety (S0951-8320),2007,(01):54-64. 被引量:1
  • 2Qiu Zhiping,Chen Suhuan,Elishakof I. Non-probabilistic eigenvalue problem for structures with uncertain parameters via interval analysis[J].Chaos Solitons and Fractals (S0960-0779),1996,(03):303-308. 被引量:1
  • 3Dempster A P. Upper and lower probabilities induced by a multi valued mapping[J].The Annals of Mathematical Statistics (S0003-4851),1967,(02):325-339. 被引量:1
  • 4B Foucher,J Tomas,F Mounsi,M Jeremias. Life margin assessment with physics of failure tools application to BGA packages[J].Microelectronics Reliability (S0026-2714),2006,(03):1013-1018. 被引量:1
  • 5Nakahara Y,Sasaki M,Gen M. On the linear programming problems with interval coefficients[J].International Journal of Computer Industrial Engineering (S0489-0142),1992,(1-4):301-304. 被引量:1
  • 6Helton J C,Johnson J D,Oberkampf W L. Effect of delayed link failure on probability of loss of assured safety in temperaturedependent systems with multiple weak and strong links[J].Reliability Engineering and System Safety (S0951-8320),2009,(02):294-310. 被引量:1
  • 7Scott J Duncan,Bert Bras,Christiaan J J Paredis. An approach to robust decision making under severe uncertainty in life cycle design[J].International Journal of Sustainable Design (S1743-8292),2008,(01):45-59.doi:10.1504/IJSDES.2008.017056. 被引量:1
  • 8Yakov Ben-Haim. Uncertainty,probability and information-gaps[J].Reliability Engineering and System Safety (S0951-8320),2004,(1-3):249-266. 被引量:1
  • 9Denys Yemshanov,Frank H Koch,Yakov Bcn-Haim. Detection capacity,information gaps and the design of surveillance programs for invasive forest pests[J].Journal of Environmental Management (S0301-4797),2010,(12):2535-2546. 被引量:1
  • 10Shafer G A. Mathematical Theory of Evidence[M].USA:Princeton University Press,1976. 被引量:1

同被引文献76

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部