摘要
在网络真实环境下的图像数据集上的大规模语义标注是一个研究难点。提出了一种基于多特征标签相关性学习的图像语义标注方法,针对真实环境下大规模图像集合进行自动标注。首先提取图像多种视觉特征,采用多标记学习方法在特定特征空间完成标注词相关性学习,得到每幅图像的单特征标注词相关度;然后采用一种动态阈值确定方法估计单个特征和标注词的相关度阈值;最终采用一种无监督组合方法融合多种特征标和标注词的相关性生成图像语义标签。通过互联网数据集上的测试表明了方法的有效性。
An image annotation method was proposed based on multiple feature tag relevance learning (MFTRL), which aimed at tagging large-scale image collections in real environment by analyzing the correlation between tags and images represented by multiple visual features. First, a multiple label learning method was utilized to generate the relevance of tags and images in specific feature space. Then, an optimal threshold was set for each tag and corresponding single feature. So the output of many tag relevance learners dlriven by diverse features could be combined in the manner of combining multi-feature tag relevance. The experiments over the intemet image set demonstrate that the proposed method is accurate and stable.
出处
《系统仿真学报》
CAS
CSCD
北大核心
2013年第2期265-269,275,共6页
Journal of System Simulation
基金
国家高技术研究发展计划(2009AA012103)
国家自然科学基金重点项目(60533070)
黑龙江省教育厅基金(12511011)
黑龙江省教育厅科学技术研究项目资助(12521055)
关键词
图像自动标注
标签相关性学习
语义标注
特征融合
image automatic annotation
tag relevance learning
semantic annotation
feature fusion