期刊文献+

基于ANFIS的自适应机动目标状态估计算法 被引量:2

Adaptive maneuvering target state estimation algorithm based on ANFIS
下载PDF
导出
摘要 针对基于当前统计(current statistics,CS)模型的机动目标状态估计算法对机动目标加速度的极限值依赖性大的缺陷,提出了一种利用自适应神经网络-模糊推理系统(adaptive neuro-fuzzy inference system,ANFIS)自适应调整目标状态噪声方差的方法。首先利用ANFIS算法对目标机动强度进行估计,进而对目标状态噪声协方差矩阵进行自适应调整;然后利用粒子滤波(particle filter,PF)算法对目标状态进行估计。仿真结果表明,与该方法能够有效提高目标状态估计的精度。 In view of the fault that the traditional maneuvering target state estimation algorithm based on current statistics (CS) model is greatly dependent on the statistical characteristic of the system state vector, an adaptive maneuvering target state estimation algorithm is proposed. Firstly, the adaptive neuro-fuzzy inference system (ANFIS) is used to adjust the system noise covariance matrix in target tracking system, after that, the particle filter (PF) algorithm is used to estimate the target state. The simulation results show that the proposed algorithm can obtain good tracking precision.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第2期250-255,共6页 Systems Engineering and Electronics
关键词 状态估计 自适应目标跟踪 自适应神经网络-模糊推理系统 当前统计模型 state estimation adaptive target tracking adaptive neuro-fuzzy inference system (ANFIS) current statistics (CS) model
  • 相关文献

参考文献3

二级参考文献18

  • 1李辉,沈莹,张安,程王争.机动目标跟踪中一种新的自适应滤波算法[J].西北工业大学学报,2006,24(3):354-357. 被引量:21
  • 2Zhou H R, Kumar K S P. A Current Statistical Model and Adaptive Algorithm for Estimating Maneuvering Targets [ J ]. AIAA Journal, Guidance, Control and Dynamics, 1984,7 (5) : 73- 86. 被引量:1
  • 3Rong X L, Vesselin P J. Survey of Maneuvering Target Tracking. Part I.. Dynamic Models [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003,39 (4) :1333-1364. 被引量:1
  • 4Nelson P A, Elliott S J. Active Control of Sound. San Die-go: Academic Press INC, 1995. 被引量:1
  • 5Kuo S M, Morgan D R. Active Noise Control Systems, Al- gorithms and DSP Implementations. New York: John Wi- ley, 1996. 被引量:1
  • 6Eriksson L J. Development of the filtered-U algorithm for active noise control. J Acoust Soc Am, 1991, 89(1) : 257 - 265. 被引量:1
  • 7Hush D R, Ahmed N, David R, et al. An adaptive IIR structure for sinusoidal enhancement, frequency estima- tion, and detection. IEEE Trans Acoust, Speech, Signal Processing, 1986, 34(6) : 1380 - 1390. 被引量:1
  • 8Lopes P A C, Piedade M S. A Kalman filter approach to active noise control. Proceedings of EUSIPCO. Finland. 2000. 被引量:1
  • 9Tan L, Jiang J. Adaptive voherra filters for active control of nonlinear noise processed. IEEE Trans Signal Processing, 2001, 49 : 1667 - 1676. 被引量:1
  • 10Bouehard M, Pailard B, Dinh C T L. Improved training of neural networks for the nonlinear active control of sound and vibration. IEEE Trans Neural Networks, 1999, 10: 391 -401. 被引量:1

共引文献5

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部