摘要
Scale-up synthesis of sub-micron ZSM-5 molecular sieve in a quasi-solid system was investigated. Compared with traditional hydrothermal synthesis, the synthesis in a quasi-solid system has the advantages of high yield, short crystallization time, low energy consumption as well as low emissions. However, the high solid content in the quasi-solid system can cause the mass and heat transfer problems and make scalable production difficult. In order to solve the problem, we have developed a method for the optimization of the mass and heat transfer. By this method one can vary the flow field in the reactor by changing the stirrer speed. Scale-up synthesis of the sub-micron ZSM-5 molecular sieve in a quasi-solid system was carried out in a 5 L reactor with double propeller-type agitators. The process was investigated with product characterization using X-ray diffraction (XRD) and scanning electron microscopy (SEM) and the flow field information was collected using laser Doppler velocimetry (LDV). The results showed that the flow field patterns can be tuned by using different stirrer speeds, the morphology and size of assynthesized of ZSM-5 can be effectively controlled.
Scale-up synthesis of sub-micron ZSM-5 molecular sieve in a quasi-solid system was investigated. Compared with traditional hydrothermal synthesis, the synthesis in a quasi-solid system has the advantages of high yield, short crystallization time, low energy consumption as well as low emissions. However, the high solid content in the quasi-solid system can cause the mass and heat transfer problems and make scalable production difficult. In order to solve the problem, we have developed a method for the optimization of the mass and heat transfer. By this method one can vary the flow field in the reactor by changing the stirrer speed. Scale-up synthesis of the sub-micron ZSM-5 molecular sieve in a quasi-solid system was carried out in a 5 L reactor with double propeller-type agitators. The process was investigated with product characterization using X-ray diffraction (XRD) and scanning electron microscopy (SEM) and the flow field information was collected using laser Doppler velocimetry (LDV). The results showed that the flow field patterns can be tuned by using different stirrer speeds, the morphology and size of assynthesized of ZSM-5 can be effectively controlled.