期刊文献+

领域自适应的最小包含球设计方法 被引量:4

Minimum enclosing ball for domain adaptation
原文传递
导出
摘要 支持向量域描述(SVDD)算法适用于异常点检测,但对于不同领域样本组的整体快速识别则力不从心.为此,基于SVDD算法提出一种基于最小包含球的领域自适应算法(MEB-DA),并将其发展为基于中心约束型最小包含球的领域自适应法(CCMEB-DA),以满足大样本数据的快速计算.该算法通过计算各自数据组的包含球球心对不同领域数据进行整体校正和相似度识别,具有较好的便捷性和自适应性.将所提出的算法应用于无限保真(WIFI)数据的室内定位和人脸识别检测,均取得了较好的效果,从而验证了所提出算法的有效性和快速性. Support vector domain description(SVDD) is very suitable for testing a single anomaly point and is inadequate for testing the whole testing dataset.Based on SVDD,the algorithm of minimum enclosing ball for domain adaptation(MEBDA) is proposed.In order to achieve the rapid calculation for large datasets,an algorithm named center constrained minimum enclosing ball for domain adaptation(CCMEB-DA) is proposed.By calculating the center of each dataset,the dataset is corrected and the similarity of data is identified between different domains,which shows a good adaptability.The proposed method is applied to the fields of wireless fidelity(WIFI) indoor positioning and face detection,and the obtained experimental results show the effectiveness of the proposed algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2013年第2期177-182,187,共7页 Control and Decision
基金 国家自然科学基金项目(60903100 60975027)
关键词 中心约束型最小包含球 领域 最小包含球 数据校正 center constrained minimum enclosing ball(CCMEB) domain minimum enclosing ball data correction
  • 相关文献

参考文献25

  • 1Hawkins D. Identifications of outliers[M].London:Chapman and Hall,1980.1-2. 被引量:1
  • 2Han J W,Damber M. Data mining:Concepts and technologies[M].San Francisco:Morgan Kaufmann Publishers,2001.381-394. 被引量:1
  • 3Knorr E,Ng R. Algorithms for mining distance-based outliers in large datasets[A].New York,1998.392-403. 被引量:1
  • 4Knorr E,Ng R,Tucakov V. Distance-based outliers:Algorithms and applications[J].VLDB J:Very Large Databases,2000,(3/4):237-253. 被引量:1
  • 5Rousseeuw P J,Leroy A M. Robust regression and outlier detection[M].New York:John Wiley and Sons,Inc,1987.1-18. 被引量:1
  • 6Kovács L,Vass D,Vidacs A. Improving quality of service parameter prediction with preliminary outlier detection and elimination[A].Budapest,2004.194-199. 被引量:1
  • 7Johnson T,Kwok I,Ng R T. Fast computation of 2-dimensional depth contours[A].New York:AAAI Press,1998.224-228. 被引量:1
  • 8Jain A K,Murty M N,Flynn P J. Data clustering:A review[J].ACM Computing Surveys,1999,(03):264-323. 被引量:1
  • 9Breunig M M,Kriegel H-P,Ng R T. LOF:Identifying density-based local outliers[A].Dallas:ACM Press,2000.93-104. 被引量:1
  • 10Ramaswamy S,Rastogi R,Shim K. Efficient algorithms for mining outliers from large datasets[A].Dallas:ACM Press,2000.427-438. 被引量:1

二级参考文献21

  • 1Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning about Data [M]. Boston: Kluwer Academic Publishers, 1991. 被引量:2
  • 2Skowron A. Extracting laws from decision tables: A rough set approach [J ]. Conputational Intelligence,1995,11(2): 371-388. 被引量:1
  • 3Mollestad T, Skowron A. A rough set framework for data mining of propositional default rules[A]. Proc of Ninth Int Symp on Methodologies for Intelligent Systems[C]. Berlin: Springer-Verlag, 1996. 448-457. 被引量:2
  • 4Tsumoto S. Modelling medical diagnostic rules based on rough sets [A]. Proc of the First Int Conf on Rough Sets and Current Trends in Computing[C]. Warsaw,1998. 475-482. 被引量:1
  • 5Stefanowski J. On rough set based approaches to induction of decision rules[A]. Rough Sets in Data Mining and Knowledge Discovery[C]. Berlin: Physica-Verlag,1998. 1 : 500-529. 被引量:1
  • 6Stefanowski J. Rough set based rule induction techniques for classification problems[A]. Porc 6th European Congress on Intelligent Techniques and Soft Computing[C]. Aachen, 1998.1:109-113. 被引量:2
  • 7Grzymala Bausse D M, Grzymala Busse J W. The usefulness of machine learning approach to knowledge acquisition[J]. Computational Intelligence, 1995,11 (2):268-279. 被引量:2
  • 8Wu X. Induction by attribute elimination[J]. IEEE Trans on Knowledge and Data Engineering, 1999, 11 (5) :805-812. 被引量:1
  • 9Pawalk Z. Rough Sets[J]. Int J of Computer and Information Science,1982,11(5): 341-356. 被引量:1
  • 10Pawalk Z. Rough Sets: Theoretical Aspects of Reasoning About Data[M]. Boston: Kluwer Academic Publishers, 1991. 被引量:1

共引文献23

同被引文献62

  • 1王继刚,顾国昌,徐立峰,王陈.可靠UDP数据传输协议的研究与设计[J].计算机工程与应用,2006,42(15):113-116. 被引量:43
  • 2Moya M, Hush D. Network constraints and multi- objective optimization for one-class classification[J]. Neural Networks, 1996, 9(3): 463-474. 被引量:1
  • 3Tax D M J, Duin R P. Support vector domain description[J]. Pattern Recognition Letters, 1999, 20(11): 1191-1199. 被引量:1
  • 4Tax D M J. One class classification: Concept-learning in the absence of counter-examples[D]. Netherlands: University of Delft, 2001. 被引量:1
  • 5Wang S, Yu J, Lapira E, et al. A modified support vector data description based novelty detection approach formachinery components[J]. Applied Soft Computing, 2012, 13(2): 1193-1205. 被引量:1
  • 6Liu Y H, Liu Y C, Chen Y J. Fast support vector data descriptions for novelty detection[J]. IEEE Trans on Neural Networks, 2010, 21(8): 1296-1313. 被引量:1
  • 7Park J, Kang D, Kim J, et al. SVDD-based pattern denoising[J]. Neural Computer, 2007, 19(7): 1919-1938. 被引量:1
  • 8Camastra F, Verri A. A novel kernel method for clustering[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(5): 801-805. 被引量:1
  • 9Ben-Hur A, Horn D, Siegelmann H T, et al. Support vector clustering[J]. J of Machine Learning Research, 2002, 2: 125-137. 被引量:1
  • 10Ortiz-Garcia E G, Salcedo-Sanz S, P6rez-Bellido dM, et al. Improving the training time of support vector regression algorithms through novel hyper-parameters search space reductions[J]. Neurocomputing, 2009, 72(16): 3683-3691. 被引量:1

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部