摘要
本文建立了一类Rn(n≥3)中非线性多重调和方程△~mu=f(|x|,u,|(u|)(m≥2)正 的径向对称整体解的存在性定理,并给出了解的有关性质,推广了文[1]-[4]的有关结果.
In this paper, we establish the theorems of existence of positive radially symmtry entire solutions for a class of nonlinear multiple harmonic equations △~mu=f(|x|,u,|(u|) (m≥2) on R^n(n≥3) and present the properties of the solutions. The results of this paper may be regarded as an extension of [1]-[4].
关键词
多重调和方程
正整解
不动点定理
非线性
存在性
multiple harmonic equation
positive entire solutionl close convex subest
relative compactness
fixed point theorem.