摘要
对矩形铅玻璃中椭圆孤子的形成进行了理论研究,在理论模型中引入各向异性衍射效应.采用变分法,得到了强非局域线性各向异性椭圆孤子的变分解.结果表明,各向异性衍射效应对椭圆孤子的形成有很大的影响.为了验证变分解的正确性,采用牛顿迭代法算出强非局域线性各向异性椭圆孤子的数值解,变分解和数值解符合得很好.
Formation of elliptical optical soliton in rectangular lead glass is theoretically investigated, and an anisotropic diffraction effect is introduced into our theoretical model. Using the variational approach, we obtain an analytic elliptic soliton solution in a strongly nonlocal medium with anisotropy, which demonstrates that anisotropic diffraction effect has a great influence on the formation of the elliptical optical soliton. To confirm the analytic solution, we work out the numerical solution by the Newton iterative method. And the analytic solution accords with the numerical solution very well.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2013年第2期229-236,共8页
Acta Physica Sinica
基金
国家自然科学基金(批准号:11074080
10904041)
广东省自然科学基金(批准号:10151063101000017)
高等学校博士学科点专项科研基金(批准号:20094407110008)资助的课题~~
关键词
强非局域性
线性各向异性
变分法
strong nonlocality, linear anisotropic, variational approach