期刊文献+

云环境下基于改进蚁群算法的网络路由优化

Network Routing Optimization in Cloud Based on Improved Ant Colony Algorithm
下载PDF
导出
摘要 针对云计算多元化复杂的网络结构环境,提出一种旨在改善网络路由的蚁群优化算法.新算法在原有蚁群算法智能寻优的基础上,加入网络节点在网审查机制,实时判断网络节点是否在网,选择最优解路径.仿真实验表明,改进算法能有效的改善因为网络节点在网情况的多变性而造成的部分路径失效的情况,进而缓解网络拥塞. Aimed at diversified and complex network structure environment in cloud,an ant colony optimization algorithm is proposed to improve the network routing quanlity.Based on the original intelligent optimization ant colony algorithm,the new algorithm adopts an network node review mechanism which can judge the network node is online or not in real time,and then select the optimal solution network routing path.Simulation result shows that improved algorithm can effectively improve the network routing quanlity when partial network path has no effect caused by the variability of the network nodes in the network,and so solve some network congestion problems.
出处 《微电子学与计算机》 CSCD 北大核心 2013年第1期24-27,共4页 Microelectronics & Computer
基金 重庆市自然科学基金(CSTC2009BB-2287) 重庆邮电大学青年基金(A2009-52) 重庆邮电大学计算机学院"云计算"专项(JK-Y-2010001)
关键词 云计算 蚁群算法 在网审查 网络路由 信息素 cloud computing ant colony optimization network review network routing pheromone
  • 相关文献

参考文献6

二级参考文献27

  • 1张晓杰,孟庆春,曲卫芬.基于蚁群优化算法的服务网格的作业调度[J].计算机工程,2006,32(8):216-218. 被引量:17
  • 2潘达儒,袁艳波.一种基于AntNet改进的QoS路由算法[J].小型微型计算机系统,2006,27(7):1169-1174. 被引量:6
  • 3MC EVOY G V, SCHULZE B. Using clouds to address grid limitations[C]//MGC'08. Belgium: Leuven Press, 2008. 被引量:1
  • 4IAN F, YONG Z. IOAN R, et al. Cloud computing and grid computing 360 Degree compared[C]//Grid Computing Environments Workshop. [s.l.]: IEEE, 2008. 被引量:1
  • 5HUAN L, DAN O. Accenture technology labs gridBatch: Cloud computing for large-scale data-Intensive batch[C] //CCGRID 2008. Shanghai:[s. n. ], 2008. 被引量:1
  • 6Amazon web services (TM). Amazon Elastic Compute Cloud (Amazon EC2)[EB/OL]. [2008-10-24]. http: //aws. amazon.com/ec2. 2008. 被引量:1
  • 7Amazon web services (TM). Amazon Simple Storage Service ( Amazon S3 ) [ EB/OL].[ 2008-10-24]. http:// aws. amazon.com/s3. 被引量:1
  • 8YANG C H, DASDAN A, HSIAO R L, et al. Map-reduce-merge. Simplified relational data processing on large elusters[C]//International conference on management of data. CA, USA: ACM SIGMOD, 2007. 被引量:1
  • 9GHEMAWAT S, GOBLOFF H, LEUNG S T. The google file system[C]//19th ACM Symposiun on Operating System 2003. New York: Association for Computing Machinery, 2009. 被引量:1
  • 10http://soft. ccw. com. cn/it/. 被引量:1

共引文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部