期刊文献+

三值噪声调制下电路中的随机共振现象 被引量:3

Phenomena of Stochastic Resonance in an RLC Series Circuit Induced by Trichotomous Noise and Gaussian White Noise
下载PDF
导出
摘要 研究了在三值噪声和热噪声扰动下的RLC电路的平均输出幅度增益.利用随机平均法和Shapiro-Loginov公式,得到了平均输出幅度增益的精确表达式.通过计算机模拟,画出了平均输出幅度增益与平坦系数、有噪声和无噪声时,输出信号振幅与输入信号频率之间的关系曲线.从结果来看,系统产生了双值噪声驱动的RLC电路中(文献[11])没有的随机共振现象,甚至还出现了双共振峰. This paper studies the phenomena of stochastic resonance in an RLC series circuit induced by trichotomous noise and Gaussian white noise. Based on the random average method and Shapiro-Loginov formula, an explicit expression of the average output amplitude gain (AOAG) is obtained. By simulation, we obtain the curves of AOAG and flatness coefficient, the amplitude of the output signal and the frequency of the input signal under both the noisy and noise-free condition. The results show that the AOAG is a non-monotonic function of flatness coefficient, i.e., the system shows the phenomena of stochastic resonance. In addition, the system shows double-resonance phenomenon which is not reported in Ref. [ 11 ].
作者 韩引霞 符强
出处 《宁波大学学报(理工版)》 CAS 2013年第1期104-109,共6页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 国家自然科学基金(10647134) 宁波大学人才工程项目(XR0708020)
关键词 三值噪声 平均输出幅度增益 RLC串联电路 随机共振 trichotomous noise average output amplitude gain RLC series circuit stochastic resonance
  • 相关文献

参考文献18

  • 1Benzi R,Sutera A,Vulpiani A. The mechanism of stochastic resonance[J].{H}Journal of Physics A:Mathematical and General,1981,(11):453-457. 被引量:1
  • 2McNamara B,Wiesenfeld K. Theory of stochastic resonance[J].{H}Physical Review A,1989,(09):4854-4869. 被引量:1
  • 3Gammaitoni L,Hanggi P,Jung P. Stochastic resonance[J].{H}Reviews of Modern physics,1998,(01):223-287. 被引量:1
  • 4Barzykin A,VSeki K,Shibata F. Periodically driven linear system with multiplicative colored noise[J].{H}Physical Review E,1998,(06):6555-6563. 被引量:1
  • 5Fulinski A. Relaxation,noise-induced transitions,and stochastic resonance driven by non-markovian dichoto-mic noise[J].{H}Physical Review E,1995,(04):4523-4526. 被引量:1
  • 6Erdichevsky V,Gitterman M. Multiplicative stochastic resonance in linear systems:Analytical solution[J].{H}EUROPHYSICS LETTERS,1996,(03):161-165. 被引量:1
  • 7Berdichevsky V,Gitterman M. Stochastic resonance in linear systems subject to multiplicative and additive noise[J].{H}Physical Review E,1999,(02):1494-1499. 被引量:1
  • 8Gitterman M. Classical harmonic oscillator with multipli-cative noise[J].{H}PHYSICA A,2005,(2/4):309-334. 被引量:1
  • 9Gitterman M. Harmonic oscillator with multiplicative noise:Non-monotonic dependence on the strength and the rate of dichotomous noise[J].{H}Physical Review E,2003,(05):57103-57107. 被引量:1
  • 10Gitterman M. Harmonic oscillator with fluctuating damping parameter[J].{H}Physical Review E,2004,(04):41101-41104. 被引量:1

二级参考文献42

共引文献16

同被引文献26

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部