期刊文献+

基于贝叶斯网络和粗糙集的信息融合方法研究及应用 被引量:1

Information fusion approach study based on Bayesian networks and rough set and its application
下载PDF
导出
摘要 利用贝叶斯网络处理不确定性问题能力强和粗糙集约简能够去除冗余性特征的优势,提出了一种基于贝叶斯网络和粗糙集的信息融合方法。该方法提取齿轮泵振动信号的幅域量纲参数作为来自不同传感器的多源信息,改进了特征属性约简方法,设计了贝叶斯网络分类器,构建了多故障贝叶斯网络对特征进行融合,通过最大后验概率准则识别故障类型。两次融合结果对比分析表明,特征属性约简后诊断正确率明显提高,验证了该方法的有效性和实用性。 Making use of advantages that Bayesian network has strong capability of processing uncertain problem and rough set re- duction can eliminate redundant features, an information fusion approach is presented based on Bayesian network and rough set. The vibration signal amplitude domain dimension parameters of gear pump are extracted as multi-source information from different sensors. Then the feature attribute reduction method is improved and the Bayesian network classifier is designed. On the basis of the above, multi-fauh Bayesian network is built up to fuse the features and recognize the fault pattern through the maximum poste- rior probability rule. The contrast analysis of twice fusion results shows that the diagnosis exactitude rate evidently increases after feature attribute reduction. Finally, it proves the validity and practicability of this new information fusion approach.
出处 《现代制造工程》 CSCD 北大核心 2013年第1期125-129,共5页 Modern Manufacturing Engineering
关键词 信息融合 贝叶斯网络 粗糙集 故障诊断 information fusion Bayesian network rough set fault diagnosis
  • 相关文献

参考文献8

二级参考文献79

共引文献227

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部