期刊文献+

焦炭对焦油模型化合物的催化裂解实验研究 被引量:7

EXPERIMENTAL STUDIES ON COKE CATALYST FOR CRACKING OF BIOMASS TAR MODEL COMPOUND
下载PDF
导出
摘要 研究焦炭对焦油模型化合物的催化裂解。考察焦炭对甲苯、甲苯与萘、甲苯与苯酚的催化裂解率及析炭率。结果表明:焦炭对甲苯的催化裂解率与同温度下的热裂解率相当,分别为61.68%与59.02%,析炭率有所降低,由8.54%变为4.16%;对萘的催化裂解率也与同温度下的热裂解率相当,分别为57.95%与56.20%,析炭率也有所降低,由20.72%变为11.89%;而焦炭对苯酚的裂解率与同温度下热裂解率相比有明显增加,由38.25%增加到97.41%,析炭率同样有所降低,由10.96%变为7.03%;说明焦炭对焦油中的组分有选择催化裂解作用。对上述反应前后焦炭样的XRD分析,发现反应后析出的炭与作为催化剂的炭是同一晶型的炭,对末裂解冷凝液的GC-MS分析,发现焦油模型化合物通过裂解后有少部分向芳香化程度增加的方向进行转化。 An experimental study on catalytic cracking of tar model compound-toluene, toluene and naphthalene, toluene and phenol over coke catalyst was done. The experimental results showed that compared thermal cracking with catalytic cracking using coke as the catalyst, the cracking efficiency of toluene are 61.68% and 59.02% re- spectively, nearly the same. The deposit carbon efficiency decreased from 8.54% to 4.16% by catalytically crack- ing. The cracking efficiency of naphthalene are nearly the same, 57.95% and 56.20% respectively, and the de- posit carbon efficiency also decreased from 20.72% to 11.89% by catalytically cracking. However, the cracking efficiency of phenol greatly increased from 38.25% by thermal cracking to 97.41% by catalytic cracking. What's more, to phenol, the deposit carbon efficiency came down from 10.96% to 7.03%. The results provide an experi- mental thinking for selective catalytic cracking of tar model compound. The XRD analysis revealed that coke before and after cracking reaction were the same crystal form. Furthermore, the GC-MS analysis illustrated tar model com- pound after pyrolysis contained a large amount of PAHs.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2013年第1期82-85,共4页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(51076058) 湖北省工业烟尘污染控制重点实验室开放基金(HBIK2012-03)
关键词 焦炭 催化剂 焦油模型化合物 催化裂解 coke catalyst tar model compound catalytic cracking
  • 相关文献

参考文献1

二级参考文献11

  • 1张晓东,周劲松,骆仲泱,陈花,孙立.催化裂化生物质焦油构成变化[J].燃料化学学报,2005,33(5):582-585. 被引量:23
  • 2AZNER P M, CABALLERO M A, GIL J, MARTIN J A, CORELLA J. Commerical steam reforming catalysts to improve biomass gasification with steam-oxygen mixtures[J]. Ind Eng Chem Res, 1998, 37(7) : 2668-2680. 被引量:1
  • 3DELGADO J, AZNER M P, CORELLA J. Biomass gasification with steam in fluidized bed:Effectiveness of CaO, MgO and CaO-MgO for hot raw gas cleaning[J], lnd Eng Chem Res, 1997, 36(5) : 1535-1543. 被引量:1
  • 4DEVI L, CRAJE M, THUNE P. Olivine as tar removal catalyst for biomass gasifiers: Catalyst characterization[ J ]. Appl Catal A, 2005, 294( 1 ) : 68-79. 被引量:1
  • 5ZHANG R, WANG Y, BROW N. Steam reforming of tar compounds over Ni/olivine catalysts doped with CeO2 [ J ]. Energy Convcrs Manage, 2007,48 (1 ) : 68-77. 被引量:1
  • 6BANGALA D N, ABATZOGLOU N, MARTIN J P, CHORNET E. Catalytic gas conditioning: Application to biomass and waste gasification[J]. Ind Eng Chem Res, 1997, 36(10) : 4184-4192. 被引量:1
  • 7DEVI L, PTASINSKI K J, JANSSEN F J J G. Pretreated olivine as tar removal catalyst for biomass gasifiers: Investigation using naphthalene as model biomass tar[ J]. Fuel Process Technol, 2005, 86(6) : 707-730. 被引量:1
  • 8庞克亮,赵长遂,林良生,向文国.天然焦的XRD及气化特性[J].燃料化学学报,2007,35(3):268-272. 被引量:17
  • 9王晨光,王铁军,吕鹏梅,常杰,徐莹.整体式催化剂催化重整净化生物质粗燃气性能研究[J].燃料化学学报,2007,35(3):285-288. 被引量:12
  • 10吕俊复,岳光溪.焦油裂解循环灰的催化失活研究[J].工程热物理学报,1999,20(5):637-641. 被引量:1

共引文献9

同被引文献62

  • 1李勇汇,冉兵,朱海昱.固体氧化物燃料电池分布式电源最大效率并网运行方式分析[J].中国电机工程学报,2012,32(S1):108-114. 被引量:3
  • 2杨学民,郭占成,王大光,谢裕生,黄典冰,孔令坛,杨天钧.含碳球团还原过程中反应分数、还原度和金属化率的关系[J].上海金属,1995,17(5):27-31. 被引量:7
  • 3王素兰,张全国,李继红.生物质焦油及其馏分的成分分析[J].太阳能学报,2006,27(7):647-651. 被引量:29
  • 4Liu Shaomin, Chen Mingqiang, Chu Lei, et al. Catalytic steam reforming of bio-oil aqueous fraction for hydrogen production over Ni-Mo supported on modified sepiolite catalysts[J]. International Journal of Hydrogen Energy, 2013, 38(10): 3948-3955. 被引量:1
  • 5Wu Ceng, Liu Ronghou. Carbon deposition behavior in steam reforming of bio-oil model compound for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(14): 7386-7398. 被引量:1
  • 6Goyal N, Pant K K, Gupta R. Hydrogen production by steam reforming of model bio-oil using structured Ni/AI203 catalysts[J]. International Journal of Hydrogen Energy, 2013, 38(2): 921-933. 被引量:1
  • 7Assaf P G M, Nogueira F G E, Assaf E M. Ni and Co catalysts supported on alumina applied to steam reforming of acetic acid: Representative compound for the aqueous phase of bio-oil derived from biomass[J]. Catalysis Today, 2013, 213: 2-8. 被引量:1
  • 8Min Zhenhua, Zhang Shu, Wang Yi, et al. Catalytic reforming of tar during gasification. Part IV. Changes in the structure of char in the char-supported iron catalyst during reforming[J]. Fuel, 2013, 106: 858-863. 被引量:1
  • 9Wang, Xun Hu, Yao Song, et al. Catalytic steam reforming of cellulose-derived compounds using a char-supported iron catalyst[J]. Fuel Processing Technology, 2013, 116: 234-240. 被引量:1
  • 10Abu El Rub Z, Bramer E A, Brem G. Experimental comparison of biomass chars with other catalysts for tar reduction[J]. Fuel, 2008, 87(10): 2243-2252. 被引量:1

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部