期刊文献+

非线性薛定谔方程的平均向量场方法 被引量:8

AN AVERAGED VECTOR FIELD METHOD FOR THE NONLINEAR SCHRDINGER EQUATION
原文传递
导出
摘要 利用平均向量场方法(AVF)对非线性薛定谔方程进行求解,在理论上得到了一个保非线性薛定谔方程描述的系统能量守恒的AVF格式,再分别用非线性薛定谔方程的AVF格式和辛格式数值模拟孤立波的演化行为,并比较两个格式是否保系统能量守恒特性.数值结果表明,AVF格式也能很好地模拟孤立波的演化行为,并且比辛格式更能保持系统的能量守恒. The averaged vector field method (AVF) ior the nonlinear bchrodmger equation is a energy-preserving method theoretically is proposed. The nonlinear Schr6dinger equation is simulated by the AVF method and the symplectie method respectively, and the energy- preserving properties for the nonlinear Sehr6dinger equation of two methods are compared. Numerical results show that the AVF scheme can well simulate the soliton evolution behaviors of the nonlinear Schr6dinger equation, and preserves the energy-preserving property better than the symplectic scheme.
出处 《计算数学》 CSCD 北大核心 2013年第1期59-66,共8页 Mathematica Numerica Sinica
基金 国家自然科学基金项目(11161017) 海南大学科研启动基金项目(kyqd1053) 海南大学青年基金项目(qnjj1022)资助
关键词 AVF格式 保能量算法 非线性薛定谔方程 AVF method energy-preserving method nonlinear SchrSdinger equation
  • 相关文献

参考文献12

  • 1Schober C M,Wlodarczyk T H. Dispersion,group velocity,and multisymplectic discretizations[J].Mathematics and Computers in Simulation,2009.741-751. 被引量:1
  • 2Sun J Q,Gu X Y,Ma Z Q. Numerical study of the soliton waves of the coupled nonlinear Schr(o)dinger system[J].Physica D-Nonlinear Phenomena,2004.311-328. 被引量:1
  • 3冯康.冯康文集[M]北京:国防工业出版社,1994. 被引量:1
  • 4Feng K;Qin M Z.Sympleatic geometric algorithms for Hamiltonion Systems Springer and Zhejiang Science and Technology Puhlishing house Heidelherg[M]浙江杭州,2010. 被引量:1
  • 5Bridges T J,Reich S. Numerical methods for Hamiltonian PDEs[J].Journal of Physics A:Mathematical and General,2006.5287-5320. 被引量:1
  • 6Chen J B,Qin M Z,Tang Y F. Symplectic and multi-symplectic methods for the nonlinear Schr(o)dinger equation[J].Computers & Mathematics with Applications,2002.1095-1106. 被引量:1
  • 7Quispel G R W,McLaren D I. A new class of energy-preserving numerical integration methods[J].Phys A:Math Theor,2008.045206. 被引量:1
  • 8Celledoni E,McLachlan R I,Owren B,Quispel G R W. On Conjugate B-series and Their Geometric Structure[J].ESCMSE,2010.85-94. 被引量:1
  • 9Chartier P,Faou E,Murua A. An Algebraic Approach to Invariant Preserving Integators:The Case of Quadratic and Hamiltonian Invariants[J].Numerische Mathematik,2006.575-590. 被引量:1
  • 10McLachlan R I,Quispel G R W,Robidoux N. Geometric integration using discrete gradients[J].Philosophical Transactions of the Royal Society of London Series A Mathematical and Physical Sciences,1999.1021-1045. 被引量:1

同被引文献49

引证文献8

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部