期刊文献+

乙醇/正庚烷燃烧过程PAH形成的数值模拟 被引量:2

Numerical Simulation of PAH Formation Process in Ethanol/n-Heptane Combustion Flame
下载PDF
导出
摘要 应用CHEMKIN化学动力学软件,构建乙醇/正庚烷的芳香烃(PAH)形成机理(包含241种组分,1,703个基元反应).在激波管和预混火焰条件下,研究乙醇/正庚烷燃烧过程中前驱体单环芳香烃(苯)和多环芳香烃(萘、菲、芘)的形成,探讨乙醇掺混比对PAH形成的影响.对生成速率的分析结果表明,丙炔基的聚合与环化、苯基的加氢反应是形成苯的主要反应;多个苯环的形成主要通过脱氢加乙炔反应;具有氧化性的H和OH自由基减少了PAH的生成.敏感性分析结果表明,乙醇/正庚烷燃烧过程中,促进苯生成的主要反应是戊基、戊烯、烯丙基和丙基的分解.随着乙醇掺混比的增加,燃烧过程中分解形成的活性羟基(—OH)摩尔分数增加,PAH的生成速率下降,表明乙醇具有抑制PAH形成的作用. The PAH formation mechanism of ethanol/n-heptane (including 241 species and 1 703 reactions)was built using the CHEMKIN software. The PAH (benzene, naphthalene, phenanthrene, pyrene) formation process of ethanol/n-heptane in shock tube and premixed flame was studied. The effect of ethanol ratios on PAH formation process was analyzed. The formation rate (ROP) analysis results showed that benzene was mainly formed by the polymerization of propargyl and the hydrogenation reaction of phenyl. Naphthalene, phenanthrene, and pyrene were mainly formed by H-abstraction acetylene addition. The H and OH oxidation radicals can reduce the formation of PAH. The sensitivity analysis results showed that during the combustion process of ethanol/n-heptane, the decomposition reaction of pentyl, pentenyl, allyl and propyl promoted the formation of benzene. During the decomposition, with the increase of ethanol ratios, the concentration of reactive --OH increased and the formation rate of PAH decreased. Study results showed that ethanol can reduce PAH formation.
出处 《燃烧科学与技术》 EI CAS CSCD 北大核心 2013年第1期9-14,共6页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(50776042) 江苏省高校自然科学基金资助项目(10KJA470009) 江苏省2012年研究生创新计划资助项目(CXZZ12_0676) 江苏高校优势学科建设工程资助项目(PAPD)
关键词 乙醇 正庚烷 PAH 数值模拟 形成过程 CHEMKIN ethanol/n-heptane PAH numerical simulation formation process CHEMKIN
  • 相关文献

参考文献11

  • 1Wijayanta A T,Alam M S,Nakaso K. Optimized combustion of biomass volatiles by varying O2 and CO2 levels:A numerical simulation using a highly detailed soot formation reaction mechanism[J].Bioresource Technology,2012,(08):645-651. 被引量:1
  • 2Miyamoto N,Ogawa H,Arima T. Improvement of diesel combustion and emissions with addition of various oxygenated agents to diesel fuels[A].MI,USA,1996. 被引量:1
  • 3Tanaka S,Ayala F,Keck J C. A reduced chemical kinetic model for HCCI combustion of primary reference fuels in a rapid compression machine[J].Combustion andFlame,2003,(04):467-481. 被引量:1
  • 4Hansen N,Cool T A,Westmoreland P R. Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry[J].Progress of Energy and Combustion Science,2009,(02):168-191. 被引量:1
  • 5Lee Wen-Jhy,Liu Yi-Cheng,Mwangi Francis Kimani. Assessment of energy performance and air pollutant emissions in a diesel engine generator fueled with water-containing ethanol-biodiesel-diesel blend of fuels[J].Energy,2011,(09):5591-5599. 被引量:1
  • 6王忠,黄慧龙,许广举,毛功平,王小哲.生物柴油多环芳香烃形成的动力学模型[J].燃烧科学与技术,2010,16(5):411-415. 被引量:7
  • 7曾文,马洪安,解茂昭.正庚烷部分预混燃烧下多环芳烃生成的简化机理[J].燃烧科学与技术,2011,17(4):313-320. 被引量:5
  • 8Marinov N M. A detailed chemical kinetic model for high temperature ethanol oxidation[J].International Journal of Chemical Kinetics,1999,(03):183-220. 被引量:1
  • 9Seiser R,Pitsch H,Seshadri K. Extinction and autoignition of n-heptane in counterflow configuration[J].Symposium (International) on Combustion,2000,(02):2029-2037. 被引量:1
  • 10Gregory P,Smith D G. Gri-Mech 3.0[EB/OL].http://www.me.berkeley.edu/gri_mech/,2002. 被引量:1

二级参考文献27

  • 1钟北京,席军.正庚烷对冲扩散火焰中多环芳烃形成机理的简化[J].燃烧科学与技术,2007,13(2):163-168. 被引量:2
  • 2Fisher E M,Pitz W J,Curran H J,et al.Detailed chemical kinetic mechani sms for cornbustion of oxygenated fuels[J].Proceedings of the Combustion Institute,2000,28:1579-1586. 被引量:1
  • 3Dagaut P,Gail S,Sahasrabudhe M.Rapeseed oil methyl ester oxidation over extended ranges of pressure,temperature,and equivalence ratio:Experimental and modeling kinetic study[J].Proceedings of the Combustion Institute,2007,31:2955-2961. 被引量:1
  • 4Herbinet O,Pitz W J,Westbrook C K.Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate[J].Combustion and Flame,2008,154:507-528. 被引量:1
  • 5Seshadri K,Lu Tianfeng,Herbinet O,et al.Experimental and kinetic modeling study of extinction and ignition of methyl decanoate in laminar nonpremixed flows[J].Proceedings of the Combustion Institute,2009,32:1067-1074. 被引量:1
  • 6Frenklach M,Clary D W,Gardiner W C,et al.Effect of fuel structure on pathways to soot[C] //Twenty-first Symposium (International) on Combustion.Pittsburgh,USA,1986:1067-1076. 被引量:1
  • 7Wang H,Frenklach M.A detailed kinetic modeling studv of aromatics formation in laminar premixed acetylene and ethylene flames[J].Combustion and Flame,1997,110:173-221. 被引量:1
  • 8Luque J,Smith G P,Crosley D M.Quantitative CH determinations in low-pressure flames[C] //Twenty-Sixth Symposium (International) on Combustion.Naples,Italy,1996:959-966. 被引量:1
  • 9Peters N,Kee R J.The computation of streched laminar methane-air diflusion flames using a reduced four-step mechanism[J].Combustion and Flame,1987,68(1):17-29. 被引量:1
  • 10Davidson D F,Herbon J T,Hommg D C,et al.OH concentration time histories in n-alkane oxidation[J].International Journal of Chemical Kinetics,2001,33(12):775-783. 被引量:1

共引文献10

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部