期刊文献+

基于上下文量化和局部线性回归的医学图像增强算法

Medical Image Enhancement Using Context Quantization and Local Linear Regression
下载PDF
导出
摘要 为解决图像降噪过程中的弱边缘问题,提出了一种基于上下文量化和局部线性回归的医学图像降噪方法。应用信息论中上下文量化技术将复杂的混合噪声模型转换成一个局部回归分析问题,并设计了一个基于上下文的自适应滤波器;应用自适应核回归分析,进一步解决了滤波器的参数高鲁棒性估计问题;结合基于上下文的自适应滤波器技术的图像增强方法,研究了一个有效的多尺度医学图像增强算法系统。对该医学图像增强技术进行系统评估后表明,基于上下文量化的多尺度医学图像增强技术优于现有算法。 To deal with the problem of weak edges in medical image algorithm using context quantization and local linear regression. Context according to minimization of conditional entropy of the GAP prediction cells and the local texture features hidden in the context. Local signing a robust filter for pixels in each quantized context. Ex proposed algorithm outperforms conventional edge-preserving fil denoising, we present an quantization is conducted residual in the quantized linear regression is applied in de-perimental results show that the ters reviewed in this work.
出处 《上海电机学院学报》 2012年第5期325-331,共7页 Journal of Shanghai Dianji University
基金 国家科技支撑计划项目资助(2012BA11507) 国家自然科学基金项目资助(61072146) 上海市科学技术委员会浦江人才计划项目资助(10PJ1404400) 上海高校青年教师培养资助计划项目资助(shdj002)
关键词 边缘保持滤波 图像去噪 上下文量化 回归分析 edge-preserving filtering image denoising context quantization regression analysis
  • 相关文献

参考文献1

二级参考文献10

  • 1李银珍,黄道中,张青萍,万婕,张超,赵胜,李进兵,周元媛,刘健.乳腺浸润性导管癌超声征象与雌激素受体表达的相关性初探[J].中华超声影像学杂志,2005,14(6):449-451. 被引量:24
  • 2金钟,汪炳权.B超图像的模糊增强处理[J].合肥工业大学学报(自然科学版),2005,28(7):768-771. 被引量:1
  • 3Anderson M,Soo MS, Bentley R. Evaluation of the ultrasonic detectability of microcalcifcations. IEEE Ultrasonics Symposium, 1995,1161-1166. 被引量:1
  • 4Lazarus E, Mainiero BM. Schepps B, et al. BI-RADS lexicon for US and mammography:interobserver variability and positive predictive value. Radiology, 2006,239 : 385-391. 被引量:1
  • 5Rangayyan RM, Shen L, Shen YP. Improvement of sensitivity of breast cancer diagnosis with adaptive neighborhood contrast enhancement of mammograms. IEEE, 1997,1(3) : 161-170. 被引量:1
  • 6Smadar G, Oleh JT, Catherine WP. ROC analysis of ultrasound tissue charaterization classifiers for breast cancer diagnosis. IEEE Transactions on Medical Imaging,2003,22(2):170-177. 被引量:1
  • 7Gupta S, Chauhan RC, Sexana SC. Wavelet-based statistical approach for speckle reduction in medical ultrasound images. Medical and Biological Engineering and Computing,2004,42(2):189-192. 被引量:1
  • 8Guo YH. A novel enhancement algorithm of breast ultrasound image based on fuzzy logic and texture analysis. The 8th JCIS,July, 2005. 被引量:1
  • 9Madjar H, Rickard M, Jellins J, et al. IBUS guidelines for the ultrasonic examination of the breast. Eur J Ultrasound, 1999,9:99-102. 被引量:1
  • 10李俊来,宋丹绯,张艳,陈敏,许德彬,管军鹏,赵学珍,唐杰.B-CAD辅助乳腺超声检查诊断乳腺癌的价值[J].中国超声医学杂志,2009,25(2):124-127. 被引量:14

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部