期刊文献+

基于迭代框架与SVDD的多示例算法

A Multi-instance Algorithm via Iterative Framework Based on SVDD
下载PDF
导出
摘要 该文提出了一种基于支持向量数据描述的自适应多示例学习算法。该算法首先通过一种代表示例选取方法,在正、负包中分别选取代表示例,并将代表示例映射到特征空间,将多示例学习问题转化为特征空间中标准单示例机器学习问题,然后利用SVDD算法对特征映射后的训练样本集合进行训练得到分类器,再将代表示例更新与分类器训练交替迭代进行,最后用训练好的分类器对测试集进行预测。在多示例学习的COREL图像库进行实验,实验结果验证了算法的有效性。 This paper propose a new adaptive multi-instance learning algorithm based on SVDD.Through the representative instance selection method,the new algorithm firstly selects representative positive and negatives instances in positive and negative bags respectively,and then maps these representative instances to feature space,thus,transform the primary multi-instance learning problem into the standard single-instance learning problem in feature space,and apply the SVDD algorithm on the treated data sets to get the classifier,finally,updates representative instances and train the classifier alternately until convergence,then the trained classifier can predict the test sets.Perform experiment in the COREL image library,the results verify the effectiveness of the algorithm.
作者 王辉 方景龙
出处 《杭州电子科技大学学报(自然科学版)》 2012年第6期77-80,共4页 Journal of Hangzhou Dianzi University:Natural Sciences
基金 浙江省科技重大专项资助项目(C14032)
关键词 机器学习 代表示例选取 多示例学习 支持向量数据描述 machine learning representative instance selection multi-instance learning support vector data description
  • 相关文献

参考文献5

  • 1Zhou Z H,Zhang M L,Huang S J. Multi-instance multi-label learning[J].Artificial Intelligence,2012,(01):2291-2320. 被引量:1
  • 2Fu Z,Robles-Kelly A,Zhou J. MILLS:multiple instance learning with instance selection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,(05):958-977. 被引量:1
  • 3刘贝家,方景龙.基于SVDD的多示例学习算法[J].科技通报,2011,27(2):195-198. 被引量:2
  • 4Chen Y,Bi J,Wang J Z. MILES:multiple-instance learning via embedded instance selection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,(12):1931-1947.doi:10.1109/TPAMI.2006.248. 被引量:1
  • 5Li W J,Yeung D Y. MILD:multiple-Instance Learning via Disambiguation[J].IEEE Transactions on Knowledge and Data Engineering,2010,(01):76-89. 被引量:1

二级参考文献11

  • 1蔡自兴,李枚毅.多示例学习及其研究现状[J].控制与决策,2004,19(6):607-610. 被引量:12
  • 2周志华.Multi-Instance Learning from Supervised View[J].Journal of Computer Science & Technology,2006,21(5):800-809. 被引量:12
  • 3Dietterich T G.Lathrop R H.Lozano-pérez T.Solving the multiple-instance problem with axis-parallel rectangles[J].Artificial Intelligence,1997,89(1-2):31-17. 被引量:1
  • 4Maron O.Leaming from ambiguity.Department of Electrical Engineering and Computer Science[D].MIT.Jun.1998. 被引量:1
  • 5Maron O,Lozano-perez T.A framework for multiple-instance learning.In:Jordan M I.Kearns M J.Solla S A eds[C] //Advances in Neural Information Processing Systems 10,Cambridge,MA:MIT Press,1998,570-576. 被引量:1
  • 6Zhang Q,Goldman S A.EM-DD:an improved multiple-instance learning technique[C] //Dietterich T G,Becker S.Ghahramani Z.eds.Advances in Neural Information Processing Systems 14,Cambridge,CA:MIT Press,2002,1073-1080. 被引量:1
  • 7Wang J,Zucker J-D.Solving the multiple-instance problem;a lazy learning approach[C] //San Francisco,CA:Processdings of the 17th International Conference on Machine Learning,2000,1119-1125. 被引量:1
  • 8Andrews S,Hofmann T,Tsochantaridis I.Multiple instance learning with generalized support vector machines. 被引量:1
  • 9Hua-Yan Wang,Qiang Yang,Hongbin Zha.Adaptive pposterior mixture -model kernels for multiple instance learning[C] //Helsinki,Finland; Proceedings of the 25th international conference on Machine learning,2008,1136-1143. 被引量:1
  • 10Wu-Jun Li,Dit-Yan Yeung.MILD:Multiple-Instance Learning via Disambiguation[J].IEEE Transactions on Knowledge and Data Engineering,2010,22(1):76-89. 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部