期刊文献+

基于黄金工作集多维数值函数极小值算法 被引量:1

Minimum Algorithm of Multi-dimensional Numerical Function Based on Golden Selection Working Sets
下载PDF
导出
摘要 提出一种黄金工作集的多维数值函数极值优化算法。根据工作集元素的贡献度不同并结合黄金分割法将工作集划分为黄金工作集和非黄金工作集。通过保留黄金工作集元素和置换非黄金工作集元素方法,保障工作集中的元素都是最优解,从而达到加速收敛实现算法的优化。通过与人工蜂群算法的进行比较,结果证明该算法在极值收敛上具有明显优势。 This paper describes global optimization algorithm of multi -dimensional numerical function based ongolden selection working set. The working set is divided into a golden selection working set and non - golden se-lection one by the contribution of the working set elements combined with the golden selection. By retaining ele- ments of the golden selection working set and replaceing elements of non - gold one, it can get the optimal solu- tion and achieve speeding up the convergence rate optimization algorithm. Compared with artificial bee colony al-gorithm, simulation result performs better than ABC algorithms in convergence.
出处 《安徽科技学院学报》 2012年第6期48-51,共4页 Journal of Anhui Science and Technology University
基金 安徽省教育厅优秀青年基金重点项目(2011SQRL117ZD) 安徽科技学院引进人才基金项目(ZRC2010255) 安徽科技学院青年科学研究基金项目(ZRC2011273)
关键词 工作集 黄金分割 贡献度 置换 多维数值函数 Working set Golden selection Contribution Replacement Multi - dimensional numerical function
  • 相关文献

参考文献4

二级参考文献13

  • 1李颖新,阮晓钢.基于支持向量机的肿瘤分类特征基因选取[J].计算机研究与发展,2005,42(10):1796-1801. 被引量:51
  • 2李春花,凌贺飞,卢正鼎.基于支持向量机的自适应图像水印技术[J].计算机研究与发展,2007,44(8):1399-1405. 被引量:17
  • 3Bian, Zhao-qi, Zhang, Xue-gong. Pattern Recognition. 2nd ed., Beijing: Tsi nghua University Press, 1999 (in Chinese).边兆祺,张学工.模式识别.第2版,北京:清华大学出版社,1999. 被引量:1
  • 4Vapnik, V. The Nature of Statistical Learning Theory. New York: Springer-V erlag, 1995. 被引量:1
  • 5Burges, C.J.C. A tutorial on support vector machines for pattern recogniti on. Data Mining and Knowledge Discovery, 1998,2(2): 955~974. 被引量:1
  • 6Boser, B.E., Guyon, I.M., Vapnik, V.N. A training algorithm for optimal ma rgin classifiers. In: Haussler, D., ed. Proceedings of the 5th Annual ACM Worksh op on COLT. Pittsburgh: ACM Press, 1992. 144~152. 被引量:1
  • 7Osuna, E., Freund, R., Girosi, F. Training support vector machines: an app lication to face detection. In: Plummer, D., ed. Proceedings of the Compute Visi on and Pattern Recognition. 1997. 130~136. 被引量:1
  • 8Platt, J. Fast training of support vector machines using sequential minima l optimization. Advances in Kernel Methods-Support Vector Learning. Cambridge, M A: MIT Press, 1999. 185~208. 被引量:1
  • 9Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., et al. Improvements to pl att's SMO algorithm for SVM classifier design. Technical Report. Bangalore, Indi a: Department of CSA, IISc, 1999. 被引量:1
  • 10Chang, C.C, Hsu, C.W, Lin, C.J The analysis of decomposition methods for s upport vector machines. In: Dean, T., ed. Proceedings of the 16th International Joint Conference on Artificial Intelligence, 1999. 200~204. 被引量:1

共引文献27

同被引文献31

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部