摘要
孤波在深度缓变矩形槽中满足的方程是含有缓变系数的非线性薛定谔方程,讨论了两种特定情况下方程的孤波解,数值模拟了单个非传播性孤波和两非传播性孤波的演化情况。
In this paper,we analyze nonlinear Schr dinger equation with a slowly varying coefficient which can describe the evolution behavior of nonpropagating solitary waves in a slowly varying depth rectangular trough,and discuss the solutions in explicit form for the nonlinear Schr?dinger equation in certain case.Moreover,the evolution behavior of one nonpropagating solitary wave and two nonpropagating solitary wave is discussed numerically.
出处
《长治学院学报》
2012年第5期11-14,共4页
Journal of Changzhi University
基金
山西省高校科技研究开发项目(20111027)
关键词
矩形槽
非线性薛定谔方程
非传播性孤波
rectangular trough
nonlinear Schr dinger equation
nonpropagating solitary wave