期刊文献+

共形阵列天线信源方位与极化状态的联合估计算法 被引量:9

Joint DOA and Polarization Estimation Algorithm for Conformal Array Antenna
下载PDF
导出
摘要 针对共形天线阵列流形的特点,提出了共形阵列天线信源方位与极化状态的联合估计算法.算法的方位估计不需要信源极化状态的任何信息,估计精度高、分辨力强,在完成信源方位估计的同时,还可以精确的估计出信源的极化状态,不需要参数配对,实现了共形阵列天线信源方位与极化状态的联合估计.算法仅需要二维参数搜索,计算量比已有的联合估计算法小,且适用于任意共形载体,具有广泛的应用范围.对算法参数估计的理论性能进行了分析推导,给出了参数估计的CRB(Cramer-Rao Bound),并通过Monte-Carlo仿真实验验证了理论分析的正确性与算法的有效性. Considering the special manifold characteristic of conformal array, a joint DOA and polarization estimation algo- rithm is proposed based on rank-deficiency theory. The new algorithm can achieve accurate and high-resolution DOA estimation without the exact knowledge of the source polarization. Simultaneously, favorable polarization estimation can also be acquired jointly with DOA estimation. The proposed method can be applied to arbitrary conformal array structure and only high-dimensional nonlin- ear search associated with the 2D DOA estimation is involved in its implementation. Compared with the classical joint DOA and po- larization estimation algorithm based on high-dimensional nonlinear search, this reduces the computational complexity considerably. The theory performance is analyzed and the CRB (Cramer-Rao Bound) is derived for this algorithm.Monte-Carlo simulation results are provided to demonslrate the performance analysis and the effectiveness of the proposed method.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第12期2562-2566,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.61172148 No.61201369) 航空科学基金(No.20112096016) 陕西省自然科学基金(No.2010JQ8003)
关键词 共形阵列天线 DOA 极化 性能分析 conformal army antenna direction-of- arrival polarization performance analysis
  • 相关文献

参考文献10

二级参考文献41

  • 1Wang J J, Zhang Y P, Chua K M, and Lu C W. Circuit model of microstrip patch antenna on ceramic land grid array package for antenna-chip codesign of highly integrated RF transceivers. IEEE Trans. on Antennas and Propagation, 2005, 53(12): 3877-3883. 被引量:1
  • 2Hussain M G M. Theory and analysis of adaptive cylindrical array antenna for ultrawideband wireless communications. IEEE Trans. on Wireless Communications, 2005, 4(6): 3075-3083. 被引量:1
  • 3Boeringer D W and Werner D H. Efficiency-constrained particle swarm optimization of a modified bernstein polynomial for con formal array excitation amplitude synthesis. IEEE Trans. on Antennas and Propagation, 20(}5, 53(8): 2662-2673. 被引量:1
  • 4Blank S J and Hute M F. On the empirical optimization of antenna arrays. IEEE Antennas and Propagation Magazine, 2005, 47(2): 58-67. 被引量:1
  • 5Stoica P and Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Trans. on Acoustics. Speech and Signal Processing, 1989, 37(5): 720-741. 被引量:1
  • 6Stoica P and Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound: Further Results and Comparisons. IEEE Trans. on Acoustics. Speech and Signal Processing, 1990, 38(12): 2140-2150. 被引量:1
  • 7Morton T and Pasala K M. Pattern synthesis of conformed arrays for airborne vehicles. IEEE Aerospace Conference Proceedings, Montana, 2004: 1030-1039. 被引量:1
  • 8L Josefsson,P Persson. Conformal array antenna theory and design [ M]. Canada: Wiley-IEEE Press, 2006. 被引量:1
  • 9H Krim,M Viberg. Two decades of array signal processing research: the parametric approach[J ]. IEEE Signal Processing Magazine, 1996,13(4) :67 - 94. 被引量:1
  • 10S Haykin, J P Reilly, V Kezys,E Vertatschitsch. Some aspects of array signal processing[J ]. IEE Proceedings-F, 1992, 139 (1):1 -26. 被引量:1

共引文献93

同被引文献105

引证文献9

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部