期刊文献+

非线性Schrdinger方程的一个线性化紧致差分格式

A linearized compact difference scheme for nonlinear Schrdinger equation
下载PDF
导出
摘要 对非线性Schrdinger方程给出了一个线性化紧致差分格式,运用不动点定理和能量方法证明了格式的唯一可解性,还运用能量方法和数学归纳法,避开困难的先验估计,证明格式在空间方向和时间方向分别具有四阶和二阶精度,数值算例验证了格式的精度和数值稳定性. We propose a linearized compact difference scheme for the nonlinear Schrisdinger equation. The exist- ence of the difference solution is proved by Brouwer fixed point theorem. It is proved by the discrete energy method and the method of mathematical induction that the new scheme is uniquely solvable and convergent with fourth-order in x-direction and second-order in t-direction. Numerical results verify the precision and numerical stability of the proposed scheme.
作者 王廷春
出处 《南京信息工程大学学报(自然科学版)》 CAS 2012年第6期569-572,共4页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金 国家自然科学基金(41174165 11126292)
关键词 非线性Schrdinger方程 紧致差分格式 存在唯一性 收敛性 nonlinear Schr^dinger equation compact difference scheme unique solvability convergence
  • 相关文献

参考文献19

  • 1GriffithsDJ. IntroductiontoQuantum mechanics[M].Englewood,Cliffs,New York:Prentice-Hall,1995. 被引量:1
  • 2MenyukCR. Stabilityofsolitonsinbirefringentoptical fibersⅡ.Arbitraryamplitudes[J].JOptSocAm B,1998,(02):392-402. 被引量:1
  • 3WadatiM,IizukaT,HisakadoM. A couplednonlinear Schrdirngerequationandopticalsolitons[J].JPhysSoc Jpn,1992,(07):2241-2245. 被引量:1
  • 4ChangQS,JiaEH,SunW. Differenceschemesforsol-vingthegeneralizednonlinearSchrdingerequation[J].Journal of Computational Physics,1999,(02):397-415. 被引量:1
  • 5DaiW. An unconditionallystablethree-levelexplicit differenceschemefortheSchrdingerequationwitha variablecoefficient[J].SIAM Journal on Numerical Analysis,1992,(01):174-181. 被引量:1
  • 6IvanauskasF,RadziunasM. Onconvergenceandstability oftheexplicitdifferencemethodforsolutionofnonlinear Schrdingerequations[J].SIAMJNumerAnal,1999,(05):1466-1481. 被引量:1
  • 7NashPL,ChenLY. Efficientfinitedifferencesolutions tothetime-dependentSchrdingerequation[J].JCom-putPhys,1997,(02):266-268. 被引量:1
  • 8SunZZ,WuX. Thestabilityandconvergenceofadiffer-enceschemefortheSchrdingerequationonaninfinite domainbyusingartificialboundaryconditions[J].Journal of Computational Physics,2006,(01):209-223. 被引量:1
  • 9FeiZ,Pérez-GarcíaVM,VzquezL. Numericalsimula-tionofnonlinearSchrdingersystems:Anewconservative scheme[J].ApplMath Comput,1995,(2/3):165-177. 被引量:1
  • 10KarakashianOA,AkrivisGD,DougalisVA. Onoptimal ordererrorestimatesforthenonlinearSchrdingerequa-tion[J].SIAMJNumerAnal,1993,(02):377-400. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部