期刊文献+

在部分信息下股票收益服从隐马尔科夫模型的最优交易策略 被引量:2

Optimal Trading Strategy under Partial Information and HMM for Stock Returns
下载PDF
导出
摘要 讨论了部分信息下股票支付红利的最优交易策略.考虑一个多种股票模型,股票价格过程满足随机微分方程,股票价格的瞬时收益率由有限状态连续时间的马尔科夫链刻画.在投资者终端财富预期效用最大化目标下,利用隐马尔科夫模型(HMM)滤波理论和Malliavin分析,导出最优交易策略的显式表达式. An optimal trading strategy is characterized under partial information with the dividend payment. A multi-stock market model is considered where prices satisfy a stochastic differential equation with instantaneous rates of return modeled as a continuous time Markov chain with finitely many states. For the investor's objective of maximizing the expected utility of the terminal wealth, an explicit representation of the optimal trading strategy is derived by using hidden Markov models (HMM) filtering theory and Malliavin calculus.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第6期758-762,共5页 Journal of Donghua University(Natural Science)
基金 国家自然科学基金资助项目(71171003) 安徽省自然科学基金资助项目(090416225) 安徽省高校自然科学基金资助项目(KJ2010A037)
关键词 投资组合最优化 部分信息 红利率 隐马尔科夫模型(HMM)滤波 Malliavin分析 portfolio optimization partial information dividend hidden Markov models (HMM)filtering~ Malliavin calculus
  • 相关文献

参考文献8

  • 1MERTON R C. Optimum consumption and portfolio rules in a continuous timemodel[J].Journal of Economic Theory,1971,(04):373-413. 被引量:1
  • 2LAKNER P. Utility maximization with partial information[J].Stochast Proc Appl,1995,(02):247-273. 被引量:1
  • 3LAKNER P. Optimal trading strategy for an investor:The case of partial information[J].Stochast Proc Appl,1998,(01):77-97. 被引量:1
  • 4ELLIOTT R J. New finite-dimensional filters and smoothers for noisily observed Markov chains[J].IEEE Transactions on Information theory,1993,(01):265-271.doi:10.1109/18.179372. 被引量:1
  • 5SASS J,HAUSSMANN U G. Optimizing the terminal wealth under partial information:The drift process as a continuous time Markov chain[J].Finance and Stochastics,2004,(04):553-577. 被引量:1
  • 6HAUSSMANN U G,SASS J. Optimal terminal wealth under partial information for HMM stock returns[J].Contemporary Mathematics,2004,(02):171-186. 被引量:1
  • 7KARATZAS I,SHREVE S E. Methods of mathematical finance[M].New York:springer-verlag,1998. 被引量:1
  • 8胡慧敏,费为银,鲍品娟.部分信息情形下带有红利的最优投资模型研究[J].经济数学,2008,25(4):362-366. 被引量:5

二级参考文献7

  • 1Karatzas,I.and S.E.Shreve.Methods of Mathematical Finaace[M].New York:Springer,1998. 被引量:1
  • 2Karatzas,l.and S.E.Shreve.Brownian Motion and Stochastic Calculus[M].New York:Springer,1991. 被引量:1
  • 3Fei,W.Y.Optimal consumption and porfolio choice with ambiguity and anticipation[J].Information Sciences,2006,177:5178-5190. 被引量:1
  • 4Malliavin,P.and A.Thalmaier.Stochastic Calculus of Variations in Mathematical Finace[M].New York:Springer,2000. 被引量:1
  • 5Lakner,P.Utility maximization with partial information[J].Stochastic Processes Appl.,1995,56:247-273. 被引量:1
  • 6Lakner,P.Optimal trading strategy for an investor:the case of partial information[J].Stochastic Processes Appl.,1998,76:77-97. 被引量:1
  • 7Lakner,P.and L.M.Nygren.Porffolio optimization with downside constraints[J].Mathematical Finance,2006,16:283-299. 被引量:1

共引文献4

同被引文献20

  • 1MERTON R C.Optimal consumption and portfolio rules in a continuous-time model[J] .Journal of Economic Theory,1971,3(4):373-413. 被引量:1
  • 2KIM T S,OMBERG E.Dynamic nonmyopic portfolio behavior[J] .Review of Financial Studies,1996,9(1):141-161. 被引量:1
  • 3CAMPBELL J Y,VICEIRA L M.Consumption and portfolio decisions when expected returns are time varying[J] .Quarterly Journal of Economics,1999,114(2):433-495. 被引量:1
  • 4CAMPBELL J Y,CHACKO G,RODRIGUEZ J,et al.Strategic asset allocation in a continuous-time VAR model[J] .Journal of Economic Dynamics and Control,2004,28(11):2195-2214. 被引量:1
  • 5ANDERSON E W,HANSEN L P,SARGENT T J.Robustness,detection,and the price of risk[Z] .Working Paper,University of Chicago,2000.https://files.nyu.edu/ts43/public/research/.svn/text-base/ahs3.pdf.svn-base. 被引量:1
  • 6HANSEN L P,SARGENT T J.Robust control and model uncertainty[J] .American Economic Review,2001,91:60-66. 被引量:1
  • 7MAENHOUT P.Robust portfolio rules and asset pricing[J] .Review of Financial Studies,2004,17 (4):951-983. 被引量:1
  • 8FEI W Y.Optimal consumption and portfolio choice with ambiguity and anticipation[J] .Information Sciences,2007,177(23):5178-5190. 被引量:1
  • 9FEI W Y.Optimal portfolio choice based on α-MEU under ambiguity[J] .Stochastic Models,2009,25(3):455-482. 被引量:1
  • 10MAENHOUT P.Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium[J] .Journal of Economic Theory,2006,128(1):136-163. 被引量:1

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部