期刊文献+

基于改进粒子滤波的视频目标跟踪算法比较分析研究 被引量:1

The Comparative Study of visual tracking Algorithm Based on Improving Particle Filter
下载PDF
导出
摘要 针对标准粒子滤波算法存在的缺陷,本文引入了两种改进的方法,引入最新的量测信息,改进粒子滤波的建议分布。EKPF通过引入扩展卡尔曼算法改进粒子分布,UPF引入无味变换改进粒子的分布,并对其进行了仿真对比分析。实验结果表明,UPF算法优于扩展卡尔曼粒子滤波算法与标准粒子滤波算法。 For the defects of the standard particle filter algorithm, two improved algorithm are proposed, which introduced the latest measurement and improved particle filter proposal distribution. EKPF through the introduction of extended Kalman al- gorithms to improve the particle distribution, UPF introduces the unscented transformation to improve the distribution of the par- ticles, and a simulation of comparative analysis is given. The experimental results show that the UPF algorithm is better than the extended Kalman particle filter algorithm and the standard particle filter algorithm.
出处 《自动化与仪器仪表》 2013年第1期10-13,共4页 Automation & Instrumentation
基金 国家自然基金项目(61263031) 甘肃省自然科学基金项目(1014ZSB064) 甘肃省财政厅项目(0914ZTB148)
关键词 目标跟踪 粒子滤波 EKPF UPF object tracking particle filter EKPF UPF
  • 相关文献

参考文献7

  • 1Brasnett P, Mihaylova L, Bull D, et al. Sequential Monte Carlo tracking by fusing multiple cues in video sequences [J]. Image and Vision Comput- ing (S0262-8856), 2007, 25(8): 1217-1227. 被引量:1
  • 2Zhai Y, Yeary M. An Intelligent Video Surveillance System Based on Mul- tiple Model Particle Filtering [A] . IEEE Conference Proceedings Instru- mentation and Measurement Technology Conference [C]. British Colum- bia ,Canada ,2008 : 254-258. 被引量:1
  • 3康文静,丁雪梅,刘功亮,崔继文,敖磊.带宽自适应Mean Shift跟踪算法[J].光电子.激光,2008,19(1):135-138. 被引量:15
  • 4Djuri' c P M, Kotecha J H, Zhang Jiang qui, et al. PartMe filtering[J]. IEEE Signal Processing, 2003,20(5 ): 19-38. 被引量:1
  • 5Julier S J, Uhlmann J K. A new method for the nonlinear transformation of means and covariances in filters and estimators [J].IEEE Trans.A.C. (S0018-9286), 2000, 45(3): 477-482. 被引量:1
  • 6Van der Merwe R, Doucet A.The unscented particle filter[C]//Advances in Neural Information Processing Systems.[S.l.] : MIT, 2000. 被引量:1
  • 7查宇飞,毕笃彦.一种基于粒子滤波的自适应运动目标跟踪方法[J].电子与信息学报,2007,29(1):92-95. 被引量:19

二级参考文献21

  • 1彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 2王维雅,丁雪梅,黄向东,谭久彬,李海英.一种小目标快速识别与跟踪方法[J].光电子.激光,2007,18(1):121-124. 被引量:14
  • 3刘贵喜,范春宇,高恩克.基于粒子滤波与多特征融合的视频目标跟踪[J].光电子.激光,2007,18(9):1108-1111. 被引量:12
  • 4Paragios N and Deriche R. Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. on Pattern Anal. Mach. Intell, 2000, 3(22): 262-280. 被引量:1
  • 5Arulampalam M, Maskell S, Gordon N, and Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. on Singal Processing, 2002,50(2):174-188. 被引量:1
  • 6Doucet A, Gordon N, and Krishnamurthy V. Particle filters for state estimation of jump Markov linear systems. IEEE Trans. on Signal Processing, 2001, 49(3): 613-624. 被引量:1
  • 7Comaniciu D, Ramesh V, and Meer P. Real.time tracking of non-rigid objects using mean shift. IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, South Carolina. 2000, Ⅱ: 142-149. 被引量:1
  • 8Kailath T. The divergence and Bhattacharyya dstance measures in signal selection. IEEE Trans. on Commun.Technol, 1967, COM-15: 52-60. 被引量:1
  • 9P'erez P, Hue C, Vermaak J, and Gangnet M. Color-based probabilistic tracking. European Conference on Computer Vision. Copenhagen, Denmark. 2002, 1: 661-675. 被引量:1
  • 10Nummiaro K, Koller-Meier E, and Van Gool L. Object tracking with an adaptive color-based particle filter. First International Workshop on Generative-Model-Based Vision,in conjunction with ECCV'02.Copenhagen, Denmark, 2002:53-60. 被引量:1

共引文献31

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部