摘要
将非线性的分形理论应用于渗流力学 ,在考虑井筒续流 ,表皮效应的影响下 ,建立了分形油藏不稳定渗流的有效井径数学模型。在该数学模型中通过引入双参数 (df,θ)来描述油藏的分形特征。分形维数df 反映了分形体的几何特征 ,是分形体复杂程度的重要标志 ;分形指数θ描述了分形网络的连通情况 (与谱维数有关 )。用拉普拉斯变换求出了此数学模型的解析解及长、短时渐近解 ,分析了压力动态特征和参数的影响。
With wellbore after-flow and skin effect taken into consideration, an effective well radius mathematical model is proposed for unsteady flow of fluids in fractal reservoirs. Nonlinear fractal geometric theory is applied to the dynamics of flow in the model. Features of the fractal reservoir are described with tow fractal parameters (df,θ), where df describes the geometric features and θ depicts the connectivity of the fractal network of the reservoir. Laplace transform is used to obtain the analytical solutions and long-time/short-time asymptotic solutions of the model. And analyses are made on the character and effects of pressure behavior and the parameters.
出处
《西南石油学院学报》
CSCD
2000年第3期37-40,共4页
Journal of Southwest Petroleum Institute
关键词
分形油藏
模型
压力动态特征
不稳定渗流
井径
fractal reservoir, mathematical model, analytical solution, pressure behavior