摘要
设G是阶为n的图.F是G的支撑子图且对所有的x∈V(G)都有k≤dF(x)≤k+1,则称F为G的[k,k+1]-因子.一个[k,k+1]-因子如果连通,则称为连通的[k,k+1]-因子.一个[k,k+1]-因子若包含一个哈密顿圈,则称为哈密顿[k,k+1]-因子.给出了图有哈密顿[k,k+1]-因子或连通的[k,k+1]-因子关于邻域并的若干新的充分条件.
Let G be a graph of order n. A spanning subgraph F of G is called a[ k, k + 1 ] -factor if k ≤ dF (x) k + 1 holds for each x ∈ V(G). A [ k, k + 1]-factor is called a connected [ k, k + 1 ] -factor if it is connected. A [ k, k + 1 ] -factor F is called a Hamilton [ k, k + 1 ] -factor if F contains a Hamilton cycle. In this paper, sev- eralsufficient conditions related to neighborhood union for graphs to have connected [ k, k + 1 ] -factors or Hamilton [ k, k + 1 ] -factors are given.
出处
《烟台大学学报(自然科学与工程版)》
CAS
2013年第1期1-3,共3页
Journal of Yantai University(Natural Science and Engineering Edition)
基金
国家自然科学基金资助项目(11201404)
山东省教育厅科技计划项目(J10LA14)
烟台大学博士基金(SX10B16)
关键词
图
[k
k+1]-因子
连通因子
邻域并
graph
[ k, k + 1 ] -factor
connected factor
neighborhood union