期刊文献+

图的邻域并和连通的[k,k+1]-因子

Neighborhood Union and Connected [k,k +1]-Factors in Graphs
下载PDF
导出
摘要 设G是阶为n的图.F是G的支撑子图且对所有的x∈V(G)都有k≤dF(x)≤k+1,则称F为G的[k,k+1]-因子.一个[k,k+1]-因子如果连通,则称为连通的[k,k+1]-因子.一个[k,k+1]-因子若包含一个哈密顿圈,则称为哈密顿[k,k+1]-因子.给出了图有哈密顿[k,k+1]-因子或连通的[k,k+1]-因子关于邻域并的若干新的充分条件. Let G be a graph of order n. A spanning subgraph F of G is called a[ k, k + 1 ] -factor if k ≤ dF (x) k + 1 holds for each x ∈ V(G). A [ k, k + 1]-factor is called a connected [ k, k + 1 ] -factor if it is connected. A [ k, k + 1 ] -factor F is called a Hamilton [ k, k + 1 ] -factor if F contains a Hamilton cycle. In this paper, sev- eralsufficient conditions related to neighborhood union for graphs to have connected [ k, k + 1 ] -factors or Hamilton [ k, k + 1 ] -factors are given.
出处 《烟台大学学报(自然科学与工程版)》 CAS 2013年第1期1-3,共3页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 国家自然科学基金资助项目(11201404) 山东省教育厅科技计划项目(J10LA14) 烟台大学博士基金(SX10B16)
关键词 [k k+1]-因子 连通因子 邻域并 graph [ k, k + 1 ] -factor connected factor neighborhood union
  • 相关文献

参考文献3

二级参考文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部