期刊文献+

Synthesis and spark plasma sintering of Al-Mg-Zr alloys 被引量:2

Synthesis and spark plasma sintering of Al-Mg-Zr alloys
下载PDF
导出
摘要 Although casting is commonly used to process aluminum alloys, powder metallurgy remains a promising technique to develop aluminum based materials for structural and functional applications. The possibility to synthesize Al-Mg-Zr alloys through mechanical alloying and spark plasma sintering techniques was explored. Al-10Mg-5Zr and Al-5Mg-1Zr alloyed powders were synthesized through wet ball milling the appropriate amount of elemental powders. The dried milled powders were spark plasma sintered through passing constant pulsed electric current with fixed pulse duration at a pressure of 35 MPa. The samples were vacuum sintered at 450, 500, 550, 600 and 620 ℃ for 10, 15 and 20 min. The Al-10Mg-5Zr alloy displays poor densification at lower sintering temperatures of 450, 500, 550 and 600 ℃. Its sinterability is improved at a temperature of 620 ℃ whereas sintering temperatures higher than 620 ℃ leads to partial melting of the alloy. It is possible to sinter the Al-5Mg-1Zr alloy at 450, 500 and 550 ℃. The increase of sintering temperature improves its densification and increases its hardness. The Al-5Mg-IZr alloy displays better densification and hardness compared to Al-10Mg-5Zr alloys. Although casting is commonly used to process aluminum alloys, powder metallurgy remains a promising technique to develop aluminum based materials for structural and functional applications. The possibility to synthesize Al-Mg-Zr alloys through mechanical alloying and spark plasma sintering techniques was explored. Al-10Mg-5Zr and Al-5Mg-1Zr alloyed powders were synthesized through wet ball milling the appropriate amount of elemental powders. The dried milled powders were spark plasma sintered through passing constant pulsed electric current with fixed pulse duration at a pressure of 35 MPa. The samples were vacuum sintered at 450, 500, 550, 600 and 620℃ for 10, 15 and 20 min. The Al-10Mg-5Zr alloy displays poor densification at lower sintering temperatures of 450, 500, 550 and 600℃. Its sinterability is improved at a temperature of 620℃ whereas sintering temperatures higher than 620℃ leads to partial melting of the alloy. It is possible to sinter the Al-5Mg-1Zr alloy at 450, 500 and 550℃. The increase of sintering temperature improves its densification and increases its hardness. The Al-5Mg-1Zr alloy displays better densification and hardness compared to Al-10Mg-5Zr alloys.
出处 《Journal of Central South University》 SCIE EI CAS 2013年第1期7-14,共8页 中南大学学报(英文版)
基金 Project(ARP-28-122) supported by King Abdul Aziz City for Science and Technology (KAC ST) of Kingdom of Saudi Arabia
关键词 aluminum alloys mechanical alloying spark plasma sintering powder metallurgy 火花等离子体烧结 铝合金 合成 放电等离子烧结技术 放电等离子体烧结 烧结温度 脉冲持续时间 粉末冶金
  • 相关文献

参考文献40

  • 1MILLER W S, ZHUANG L, BOTTEMA J, WITTEBROOD A J, DE SMET P, HASZLER A, VIEREGGE A. Recent development in aluminium alloys for the automotive industry [J]. Mater Sci Eng. A, 2000, 280: 37-49. 被引量:1
  • 2SAHEB, N, LAOUI T, DAUD A R, YAHAYA R, RADIMAN S. Microstructure and Hardness behaviours of Ti-containing AI-Si alloys [J]. Phil Mag, 2002, 82:803-814. 被引量:1
  • 3VINTILA R, CHAREST A, DREW R A L, BROCHU M. Synthesis and consolidation via spark plasma sintering of nanostructured AI-5356/B4C composite [J]. Mater Sci Eng A, 2011, 528: 4395-4407. 被引量:1
  • 4CHOI P P, KIM J S, NGUYEN O T It, KWON D H, KWON Y S, KIM J C. AI-La-Ni-Fe bulk metallic glasses produced by mechanical alloying and spark-plasma sintering [J]. Mater Sci Eng A, 2007, 449/450/451: 1119-1122. 被引量:1
  • 5MULA S, MONDAL K, GHOSH S, PABI S K. Structure and mechanical properties of AI Ni-Ti amorphous powder consolidated by pressure-less, pressure-assisted and spark plasma sintering [J]. Mater Sci EngA, 2010, 527: 3757-3763. 被引量:1
  • 6GAO X, YUAN Y, ZHANG D J, LI W, L1N R D, CUI J M, LUO F H Influence of double press/double sinter processing on sintered alloys made from pre-alloyed steel powder [J]. Journal of Central South University: Science and Technology, 2011, 42(9): 2628-2634. (in Chinese). 被引量:1
  • 7ZHU F X, Y1 J H, PENG Y D. Sintering response of copper powder metal compact in microwave field [J]. Journal of Central South University: Science and Technology, 2009, 40 (1): 106-111. 被引量:1
  • 8WANG X F, HUANG Q Z, YIN C L, TAN R X, NING K Y, WU C C Wet friction properties of copper-based material via powder metallurgy [J]. Journal of Central South University: Science and Technology, 2008, 39 (3): 517-521. 被引量:1
  • 9SAHEB N, MENG P T, DAUD A R. Compaction and sintering bchaviour of A356-fly ash composites: A preliminary investigation [J]. Powder Metall, 2007, 50: 54-59. 被引量:1
  • 10LI S L, LIU Y, CUI J M, YANG W Z, LI H P, HE Y L. synthesis and hydrogen desorption properties of Mg2FeH6 hydrogen storage material by reactive mechanical alloying [J]. Journal of Central South University: Science and Technology, 2008, 39(1): 1-6. (in Chinese). 被引量:1

二级参考文献45

  • 1Chengchang Jia Qing He Jie Meng Lina Guo.Influence of mechanical alloying time on the properties of Fe_3Al intermetallics prepared by spark plasma sintering[J].Journal of University of Science and Technology Beijing,2007,14(4):331-334. 被引量:6
  • 2C.Y. Xu, S.S. Jia, and Z.Y. Cao, Synthesis of Al-Mn- Ce alloy by the spark plasma sintering, Mater. Charaet., 54(2005), No. 4-5, p. 394. 被引量:1
  • 3M. Oghbaei and O. Mirzaee, Microwave versus conventional sintering: a review of fundamentals, advantages and appli- cations, J. Alloys Compd., 494(2010), No. 1-2, p. 175. 被引量:1
  • 4E.T. Thostenson and T.W. Chou, Microwave processing: fundamentals and applications, Com pos. Part A, 30(1999), No. 9, p. 1055. 被引量:1
  • 5C. Leonelli, P. Veronesi, L. Denti, A. Gatto, and L. Iu- liano, Microwave assisted sintering of green metal parts, J. Mater. Process. Technol., 205(2008), No. 1-3, p. 489. 被引量:1
  • 6J.W. Walkiewicz, G. Kazonich, and S.L. McGill, Microwave heating characteristics of selected minerals and compounds, Miner. Metall. Process., 5(1988), No. 1, p. 39. 被引量:1
  • 7K. Matsugi, N. Ishibashi, T. Hatayama, and O. Yanagi- sawa, Microstructure of spark sintered titanium-aluminide compacts, Intermetallics, 4(1996), No. 6, p. 457. 被引量:1
  • 8H.B. Feng, Y. Zhou, D.C. Jia, and Q.C. Meng, Rapid syn- thesis of Ti alloy with B addition by spark plasma sintering, Mater. Sci. Eng. A, 390(2005), No. 1-2, p. 344. 被引量:1
  • 9C. Shearwood, Y.Q. Fu, L. Yu, and K.A. Khor, Spark plasma sintering of TiNi nano-powder, Scripta Mater., 52(2005), No. 6, p. 455. 被引量:1
  • 10X. Lu, X.B. He, B. Zhang, L. Zhang, X.H. Qu, and Z.X. Guo, Microstructure and mechanical properties of a spark plasma sintered Ti-45Al-8.5Nb-0.2W-0.2B-0.1Y alloy, In- termetallics, 17(2009), No. 10, p. 840. 被引量:1

共引文献2

同被引文献30

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部