期刊文献+

铝合金搅拌摩擦焊管液压胀形性能及变形规律

Plastic Deformation of 2024 Aluminum Alloy Friction Stir Welded Tube during Hydro Bulging
原文传递
导出
摘要 利用搅拌摩擦焊及变薄旋压复合工艺获得2024铝合金管材,通过胀形实验研究退火处理后不同焊接匹配系数铝合金焊管的胀形性能及环向壁厚分布。利用数值模拟分析不同焊接匹配系数焊管胀形时焊缝与母材的变形差异及应力、应变发展过程。结果表明:高焊接匹配系数焊管较低焊接匹配系数焊管表现出更高的膨胀率和更均匀的环向壁厚分布。利用数值模拟结合力学分析得出,高焊接匹配系数的焊管,焊缝等效应力高于母材,焊缝处于双拉的应变状态;而低焊接匹配系数的焊管焊缝的等效应力稍低于母材,焊缝处于环向受拉,而轴向先受压后受拉的应变状态。高焊接匹配系数利于焊缝协调母材变形,从而使焊管获得较好的胀形能力。 A 2024 aluminum alloy tube was prepared by friction stir welding and spinning. The bulging performance and circumferential thickness distribution of the welded tube with different strength matching coefficients were investigated by the hydro bulging experiment. The deformation behaviors and the stress and strain history of the welded tube during hydro-bulging were investigated by finite element analysis (FEA) and mechanics analysis. The results indicate that the welded tube with high strength matching coefficient shows higher bulge ratio and more uniform circumferential thickness distribution than that with low strength matching coefficient. The results of FEA and mechanics analysis show that the equivalent stress on the weld is higher than that of the base material and the strain state of the weld is biaxial tension for the welded tube with high strength matching coefficient. On the contrary, the equivalent stress on the weld is lower than that of the base material for the welded tube with low strength matching coefficient, and the tensile strain occurs in the circumferential of the weld, while the compressive strain firstly occurs in the axial direction of the weld and then gradually transforms to tensile strain. The welded tubes with high strength matching coefficient possess high formability during hydro bulging for that the welds with high strength promote the deformation of the base material.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2012年第12期2113-2117,共5页 Rare Metal Materials and Engineering
关键词 液压胀形 搅拌摩擦焊 铝合金焊管 塑性变形 hydro bulging friction stir welding aluminum alloy welded tube plastic deformation
  • 相关文献

参考文献17

  • 1Dohmann F, Hartl Ch. J Mater Process Tech [J], 1997, 71 (2): 174. 被引量:1
  • 2Manabe K, Suetake M, Koyama H et al. Int J Mach Tool Manu[J], 2006, 46(11): 1207. 被引量:1
  • 3Yuan Shijian(苑世剑),Liu Gang(刘钢),He Zhubing(何祝斌),et al.数字制造科学[J],2008,6(4):2. 被引量:1
  • 4Fuchizawa S. Proceedings of the 2nd International Conference on Technology of Plasticity[C]. Berlin: Springer Verlag, 1987:727. 被引量:1
  • 5Fuchizawa S, Narazali M. Proceedings of the 4th International Conference on Technology of Plasticity[C]. Beijing: International Academic Publishers, 1993:488. 被引量:1
  • 6Woo D M. JEng Mater Technol[J], 1973, 95:219. 被引量:1
  • 7Yeong-Maw Hwang, Yi-Kai Lin, Altan T. Int J Mach Tool Manu[J], 2007, 47(2): 343. 被引量:1
  • 8Sokolowski T, Gerke K, Ahmetoglu Met al. J Mater Process Tech[J], 2000, 98(1): 34. 被引量:1
  • 9Genevois C, Deschamps A, Denquin A et al. Acta Mater[J], 2005, 53:2447. 被引量:1
  • 10Srivatsan T S, Vasudevan S, Park L. Mater Sci Eng A[J], 2007, 466:235. 被引量:1

二级参考文献46

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部