期刊文献+

基于特征联合和支持向量机的人脸识别 被引量:3

Face recognition based on features combination and SVM
下载PDF
导出
摘要 在兼顾实时性的情况下,为了进一步提高人脸识别的识别率,本文提出一种基于特征联合和支持向量机的人脸识别方法。首先,提取人脸样本的梯度方向直方图特征和局部二值模式特征,并将这两种特征进行联合形成样本的联合特征。其次,使用主成分分析法对样本联合特征进行降维得到样本的低维联合特征。最后,利用训练样本的低维联合特征训练支持向量机得到一个人脸识别器,并利用该人脸识别器对测试样本进行识别。基于ORL人脸库的实验结果表明,与现有方法相比,本文方法在取得较高识别率的同时也取得了较好的实时性。 In order to further improve the face recognition rate in the case of taking into acount of the real-time, a novel face recognition method based on features combination and support vector machine is proposed. Firstly, the sample features of histograms of oriented gradients and local binary patterns are extracted and combined as the sample's combined features. Secondly, the principal component analysis method is adopted to reduce the dimension of the sample's combined features and the low dimensional combin- ed features can be obtained. Finally, a support vector machine is trained by using the low dimensional combined features to form a face recognizer, and then the face recognizer is utilized to recognize the test samples. The experiments based on ORL face database show, compared with the existing methods, the proposed method can achieve better recognition rate and real-time.
出处 《燕山大学学报》 CAS 2012年第6期519-525,共7页 Journal of Yanshan University
基金 河北省自然科学基金资助项目(F2010001276)
关键词 人脸识别 梯度方向直方图 局部二值模式 支持向量机 ORL人脸库 face recognition histograms oforiented gradients local binary pattems support vector machine ORL face database
  • 相关文献

参考文献13

  • 1Brunelli R,Poggio T.Face recognition through geometrical features[C]//Proceedings of the Second European Conference on ComputerVision, Santa Margherita Ligure, Italy, 1992: 792-800. 被引量:1
  • 2Starovoitov V,SamalD. A geometric approach to face recognition[C] //Proceedings of the 1999IEEE-EURASIP Workshop on Non-linear Signal and Image Processing,Antalya,Turkey, 1999:210-213. 被引量:1
  • 3Wright J, Yang A Y,Ganesh A, et al.. Robust face recognitionvia sparse representation [J]. IEEE Transactions on Pattern Analysisand Machine Intelligence, 2009,31 (2): 210-227. 被引量:1
  • 4Yang M, Zhang L, Yang J, et al.. Metaface learning for sparserepresentation based face recognition [C] //Proceedings of the 2010International Conference on Image Processing, Hong Kong, 2010:1601-1604. 被引量:1
  • 5LiZF, Lin D H, MengHL,et al.. Discriminant mutual subspacelearning for indoor and outdoor face recognition [C] //Proceedingsof the 2007 IEEE Computer Society Conference on Computer Vi-sion and Pattern Recognition, Minneapolis, USA, 2007: 1-6. 被引量:1
  • 6Song L. Face recognition based on feature fusion [C] //Proceedingsof the 2011 Cross Strait Quad-Regional Radio Science and Wire-less Technology Conference, Harbin, China, 2011: 1524-1527. 被引量:1
  • 7吴建华,李娜,李静辉,陈岚峰.基于遗传神经网络的人脸识别分类器设计[J].仪器仪表学报,2006,27(z3):2230-2231. 被引量:2
  • 8MageshKumar C,Thiyagarajan R, Natarajan S P, et al.. Gaborfeatures and LDA based Face Recognition with ANN classifier[C] //Proceedings of the 2011 Emerging Trends in Electrical andComputer Technology, Nagercoil, India, 2011: 831-836. 被引量:1
  • 9Huang S M,Yang J F, Chang S C. Robust face recognition usingsubface hidden Markov models [C] //Proceedings of the 2010 IEEEInternational Symposium on Circuits and Systems: Nano-Bio Cir-cuit Fabrics and Systems, Paris, France, 2010: 1547-1550. 被引量:1
  • 10KhanNM, Ksantini R, Ahmad IS, et al.. A novel SVM+NDAmodel for classification with an application to face recognition [J].Pattern Recognition, 2012,45 (1): 66-79. 被引量:1

二级参考文献3

共引文献1

同被引文献32

  • 1李国,穆国旺,睢佰龙.基于生物启发特征与PCA-LDA的人脸识别方法[J].河北工业大学学报,2013,42(5):80-83. 被引量:2
  • 2毛喆,初秀民,严新平,吴超仲.汽车驾驶员驾驶疲劳监测技术研究进展[J].中国安全科学学报,2005,15(3):108-112. 被引量:76
  • 3段锦.人脸自动机器识别[M].北京:科学出版社,2009:88-103. 被引量:11
  • 4罗婷婷,范太华.支持向量机核函数及优化研究[J].兵工自动化,2007,26(10):34-35. 被引量:3
  • 5Song Mingli, Tao Dacheng, Liu Zicheng, et al. Image ratio features for facial expression recognition appli- cation[J]. IEEE Transactions on Systems,Man,and Cybernetics. Part B: Cybernetics,2010,40(3) : 779 788. 被引量:1
  • 6Shang Junjun, Ke Yongzhen. An image recognition method using muhi-features [C]// Proceedings of the llth International Symposium on Distributed Computing and Applications to Business, Engineering & Science. Guilin: IEEE,2012: 419-423. 被引量:1
  • 7Zhou Qiangqiang, Zhao Zbenbing. Substation equip- ment image recognition based on SIFT feature matching[C]//Proceedings of 5th International Congress on Image and Signal Processing (CISP). Chongqing: IEEE,2012: 1344-1347. 被引量:1
  • 8Bayramoglu N, Alatan A A. Shape index SIFT: Range image recognition using local features[C]//20th Inter- national Conference on Pattern Recognition(ICPR). Istanbul,Turkey: IEEE,2010: 352-355. 被引量:1
  • 9Doshi N P, Schaefer G. Compact multi-dimensional LBP features for improved texture retrieval[C]// Proceedings of the Second International Conference on Robot, Vision and Signal Processing. Washing- ton,DC,USA: IEEE,2013: 51-55. 被引量:1
  • 10BRUNELLI R,POGGIC T.Face recognition:Features versus tem-plates[J].IEEE Transactions on PAMⅠ,1993,15:1042-1052. 被引量:1

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部