期刊文献+

Numerical simulation of the parabolic shell surface under blast wave loading 被引量:1

Numerical simulation of the parabolic shell surface under blast wave loading
下载PDF
导出
摘要 Deformation of parabolic shell surface under explosion shock waves is a complex dynamic problem. Because of reflection and interference of blast wave, it's hard to analytically delineate the dynamic responds of radar parabolic shell surface on blast wave. To gain the characteristics of thin shell deformation under impulsive loading of blast wave, numerical simulation methods for blast load on the shell structure was studied and analyzed. Euler-Lagrange numerical simulation was implemen- ted by AUTODYN code to simulate the problem. Through analysis on deflection feature of radial po- sition under different explosive mass and detonation height, an equation was founded by fitting the deflection results from numerical simulation results of shockwave loading. Experiments were ar- ranged to confirm the validity of the formula. The results gained by simulation are consistent with experiments, and the formula can be used to delineate the deflection of aluminum alloy parabolic shell under blast loading. Deformation of parabolic shell surface under explosion shock waves is a complex dynamic problem. Because of reflection and interference of blast wave, it's hard to analytically delineate the dynamic responds of radar parabolic shell surface on blast wave. To gain the characteristics of thin shell deformation under impulsive loading of blast wave, numerical simulation methods for blast load on the shell structure was studied and analyzed. Euler-Lagrange numerical simulation was implemen- ted by AUTODYN code to simulate the problem. Through analysis on deflection feature of radial po- sition under different explosive mass and detonation height, an equation was founded by fitting the deflection results from numerical simulation results of shockwave loading. Experiments were ar- ranged to confirm the validity of the formula. The results gained by simulation are consistent with experiments, and the formula can be used to delineate the deflection of aluminum alloy parabolic shell under blast loading.
出处 《Journal of Beijing Institute of Technology》 EI CAS 2012年第4期427-433,共7页 北京理工大学学报(英文版)
基金 Supported by the National Defense Basic Science Foundation(B1020060357)
关键词 blast wave thin shell simulation DEFLECTION blast wave thin shell simulation deflection
  • 相关文献

参考文献4

二级参考文献7

共引文献46

同被引文献14

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部