期刊文献+

一类贷款利率下的风险模型红利折现的矩 被引量:1

Moments of the Discounted Dividend Payments in the Risk Model under a Debit Interest Rate
下载PDF
导出
摘要 考虑常数贷款利率下带有常数红利边界的经典风险模型,给出该模型下保险公司破产前全部红利折现的任意阶矩满足的积分-微分方程及相应的边界条件. The classical risk model with a constant dividend barrier under a debit interest rate was consid- ered. The integro - differential equation with certain boundary conditions satisfying the moments of the discounted dividend payments was derived.
作者 王后春
出处 《佳木斯大学学报(自然科学版)》 CAS 2012年第6期946-948,共3页 Journal of Jiamusi University:Natural Science Edition
基金 安徽高校省级自然科学研究项目(KJ2012Z050) 安徽高校省级自然科学研究项目(KJ2012A056)
关键词 风险模型 红利边界 积分-微分方程 risk model dividend barrier moment integro - differential equation
  • 相关文献

参考文献7

二级参考文献15

  • 1何文炯,蒋庆荣.随机利率下的增额寿险[J].高校应用数学学报(A辑),1998,13(2):145-152. 被引量:36
  • 2Li S,Garrido J.On Ruin for the Erlang(n) Risk Process[J].Insurance: Mathematics and Economics,2004,34(3). 被引量:1
  • 3Tsai C C,Sun L.On the Discounted Distribution Functions for the Erlang(2) Risk Process[J].Insurance:Mathematics and Economics,2004, 35(1). 被引量:1
  • 4Gerber H U,Shiu E S W.The Time Value of Ruin in a Sparre Andersen Model[J]. North American Actuarial Journal,2005,9(2). 被引量:1
  • 5Dickson D C M,Waters H R. Some Optimal Dividend Problems[J].Astin Bulliten,2004,34(1). 被引量:1
  • 6Irback J. Asymptotic Theory for a Risk Process with High Dividend Barrier[J]. Scandinavian Actuarial Journal,2003,(2). 被引量:1
  • 7Avenzi B.Strategies for Dividend Distribution:A Review[J].North American Actuarial Journal,2009,13(2). 被引量:1
  • 8Li S,Garrido J.On a Class of Renewal Risk Models With a Constant Dividend Barrier[J].Insurance:Mathematies and Economics,2004,35 (3). 被引量:1
  • 9Zong Zhaojun Hu Feng.ASYMPTOTIC THEORY FOR A RISK PROCESS WITH A HIGH DIVIDEND BARRIER[J].Applied Mathematics(A Journal of Chinese Universities),2007,22(3):253-258. 被引量:1
  • 10Feller,W.An Introduction to Probability Theory and Its Applications. . 1971 被引量:1

共引文献3

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部