期刊文献+

分布动载荷识别的二维小波-伽辽金方法 被引量:6

Two-Dimension Wavelet-Galerkin Method for Distributed Load Identification
下载PDF
导出
摘要 根据张量积二维小波理论,利用Daubechies小波的正交性,建立了基于梁结构动力学方程和有限元方程的一维分布动载荷的识别方法,即二维小波-伽辽金方法。该方法将动力学方程和有限元方程由时域转化到小波域中,从而将时域中复杂的卷积关系变成小波域中简单方程组的求解。仿真算例表明,该方法能有效识别一维梁结构上的分布动载荷且计算效率较高。 A method of using the tensor product wavelet theory and the orthogonality of Daubechies wavelet to identify the distributed dynamic load acting on a beam is presented.The method is also named as wavelet Galerkin method.The dynamic equation and the finite element equation of the beam are transformed from time domain into wavelet domain,so the convolution equation is replaced by a simple linear equation group.The simulation example shows that the method can effectively identify the one-dimensional distribution dynamic load and has high calculation efficiency.
作者 秦远田
出处 《振动.测试与诊断》 EI CSCD 北大核心 2012年第6期1005-1009,1040,共5页 Journal of Vibration,Measurement & Diagnosis
关键词 载荷识别 分布动载荷 动力学 小波方法 load identification,distributed load,dynamics,wavelet method
  • 相关文献

参考文献8

二级参考文献37

  • 1田燕,邢士勇,张志斌,郑海起.基于径向基网络的变速箱载荷识别研究[J].振动.测试与诊断,2004,24(2):100-102. 被引量:5
  • 2李世雄.小波变换及其应用[J].地球物理学进展,1992,7(2):45-53. 被引量:9
  • 3智浩,岳前进,林家浩.海洋平台随机冰力谱的识别[J].海洋工程,2000,18(2):13-17. 被引量:8
  • 4Turune R, Nordlund OP. Full-scale measurement of the dy- namic properties of a channel mark. In: Proc. of the 9th IAHR International Symposium on Ice. Sapporo, Japan, 1988, 1:537-548. 被引量:1
  • 5Elshafey AA, Haddara MR, Marzouk H. Identification of the excitation and reaction forces on offore platforms us- ing the random decrement technique. Ocean Engineering, 2009, 36(6-7): 521-528. 被引量:1
  • 6Karlsson D, Hill DJ. Modeling and identification of non- linear dynamic loads in power systems. IEEE Trans on Power Systems, 1994, 9(1): 157-166. 被引量:1
  • 7Bartlett FD, Flannelly WD. Model verification of force de- termination for measuring vibration loads. Journal of the American Helicopter Society, 1979, 19(4): 10-18. 被引量:1
  • 8Liu Y, Shepard WS. Dynamic force identification based on enhanced least squares and total-squares schemes in the frequency domain. Journal of Sound and Vibration, 2005, 282:37-60. 被引量:1
  • 9Nerio Tullini, Ferdinando Laudiero. Dynamic identification of beam axial loads using one flexural mode shape. Journal of Sound and Vibration, 2008, 318:131-147. 被引量:1
  • 10Inoue H, Kishimoto K, Shibuga T, et al. Regularization of numerical inversion of the laplace transform for the inverse analysis of impact force. JSME Int J Set A, 1998, 41A: 473-480. 被引量:1

共引文献21

同被引文献56

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部