期刊文献+

一种基于分组遗传算法的聚类新方法 被引量:7

A New Clustering Method Based on Grouping Genetic Algorithm
下载PDF
导出
摘要 为提高聚类效果,提出了一种基于分组遗传算法的聚类新方法。以改进的分组编码方式表示种群中的个体并基于此制定了合理的种群初始化方案,采用改进的遗传操作算子和种群更新规则,利用遗传算法高效的全局搜索能力实现聚类。通过非线性排序选择机制和精英保留策略提高了遗传进化的稳定性;引入同类并行交叉和合并分割变异算子提高了算法运行效率,增强了全局寻优能力。实验结果表明,该聚类新算法能够自动获得最优聚类数和最优划分方案,具有良好的性能和聚类效果。 In this paper, in order to improve the accuracy of clustering, a new clustering method based on grouping genetic algo- rithm is proposed. The algorithm represents individuals by improved grouping coding mode, and based on it a manner of initial popula- tion is formulated. The algorithm employs improved genetic operators and performs clustering with the effective global searching ability of genetic algorithm. The evolutionary stability of the algorithm is improved by applying nonlinear selection mechanism and elitism sche- ma. The operating efficiency and global search ability of the algorithm is improved by adopting parallel crossover and merging-splitting mutation. The experimental results indicate that the clustering method based on grouping genetic algorithm can automatically find the proper number of clusters and the proper partition from a given data set, and derive better performance and higher accuracy for cluste- ring problems.
出处 《西华大学学报(自然科学版)》 CAS 2013年第1期39-43,共5页 Journal of Xihua University:Natural Science Edition
基金 国家自然科学基金(11161041) 中央高校基本科研基金(zyz2012081)
关键词 聚类分析 分组遗传算法 并行交叉 clustering analysis grouping genetic algorithm parallel crossover
  • 相关文献

参考文献14

  • 1Jain Anil K. Data Clustering: 50 Years Beyond k-means [ J ]. Pattern Recognition Letters,2010, 31 (3) : 651 - 666. 被引量:1
  • 2McQueen J. Some Methods for Classification and Analysis of Multivariate Observations[ C]//Proceedings of the 5th Berkeley Symposium on Mathematics and Statistics. Berkeley: University of California Press, 1968 : 281 - 297. 被引量:1
  • 3Ester M, Kriegel H P, Sander J. A Density-based Algorithm for Discovering Clusters in Large Spatial Data Bases with Noise[ C ]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. New York : Amer Assn for Aritifical, 1996 : 226 - 231. 被引量:1
  • 4David E Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning [ M]. Boston: USA Addison-Wesley, 1989:5 - 20. 被引量:1
  • 5刘淳安.基于实数编码的多父体杂交遗传算法[J].西华大学学报(自然科学版),2006,25(4):14-15. 被引量:2
  • 6Ujjwal Maulik, Sanghamitra Bandyopadhyay. Genetic Algorithm-Based Clustering Technique [ J ]. Pattern Recognition, 2000, 33 : 1455 - 1465. 被引量:1
  • 7Dong-Xia Chang, Xian-Da Zhang, Chang-Wen Zheng. Agenetic Algorithm with Gene Rearrangement for K-means Clustering[J]. Pattern Recognition, 2009, 42 : 1210 - 1222. 被引量:1
  • 8Hong He, Yonghong Tan. A Two-stage Genetic Algorithm for Automatic Clustering[J]. Neurocomputing, 2012, 81:49-59. 被引量:1
  • 9Falkenauer E. The Grouping Genetic Algorithms 2 widening the Scope of the GAs [J]. JORBEL2 Belgian Journal of Operations Re2 search, Statistics and Computer Science, 1992, 33 (1/2) : 79 -102. 被引量:1
  • 10朱连江,马炳先,赵学泉.基于轮廓系数的聚类有效性分析[J].计算机应用,2010,30(12):139-141. 被引量:120

二级参考文献13

共引文献120

同被引文献81

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部