期刊文献+

橡胶密封圈在刚性力作用下应变有限元分析 被引量:2

FEM Analysis of Strain of Rubber Seal Ring under Rigid Forces
下载PDF
导出
摘要 为了研究橡胶密封圈在刚性力作用下的应力与变形,采用Newton-Raphson非线性算法,使用位移准则来判断其收敛性。密封圈则按照超弹性材料处理,采用了Mooney-Rivilin模型材料,建立其有限元模型,进行了网格的划分,施加了合适的边界条件,模拟了真实的受力环境,计算出了在刚性力作用下产生的应力和发生的变形。并且使用动画技术直观地显示了其变形过程。应变有限元分析的结果为橡胶材料可靠设计、优化提供了一定的指导。 In order to research the stress and deformation of rubber seal ring under rigid forees, Newton-Raph- son nonlinear algorithm is adopted and used displacement criterion to judge the convergence of the algorithm. Rubber seal ring is regarded as hype elastic material of Mooney-Rivilin mode. The finite element model of it is created and the mesh is generated and appropriate boundary conditions are applied, then the stress and defirmation are calculated. The rest, h is displayed by animation technology. Those conclusions afford benefit for reliable design and optimization of nber material.
作者 肖彬
出处 《科学技术与工程》 北大核心 2012年第35期9684-9687,共4页 Science Technology and Engineering
基金 北方工业大学科研基金资助
关键词 非线性 刚性力 超弹性材料 有限元 nonlinear rigid firrces hype elastic material finite element
  • 相关文献

参考文献6

二级参考文献56

  • 1胡跃明,周其节,刘永清.广义系统的变结构控制[J].控制理论与应用,1993,10(5):567-571. 被引量:19
  • 2王宝珍,胡时胜,周相荣.不同温度下橡胶的动态力学性能及本构模型研究[J].实验力学,2007,22(1):1-6. 被引量:27
  • 3ALVAREZ-RAMIREZ J, MARTINEZ R. Practical stabilization of a class of uncertain chemical reactors[ C]// Proceedings of the 32nd IEEE Conference on Decision and Control. Texas, USA: IEEE Press, 1993: 3877-3878. 被引量:1
  • 4BALAN V, STAMIN C S. State-space exact linearization and stabilization with feedback control in SODE economic models[ J]. Journal of Applied Mathematics and Computing, 2008, 28 : 271-281. 被引量:1
  • 5SPEKREIJSE H, OOSTING H. Linearizing: a method for analysing and synthesizing nonlinear systems[J]. Biological Cybemetics, 1970, 7(1) : 22-31. 被引量:1
  • 6YESILDIREK A, LEWIS F L. Feedback linearization using neural networks[J]. Automatica, 1995, 31( 11): 1659-1664. 被引量:1
  • 7ARCHANA T, AMIT P, SOUVIK B. Feedback linearization based control of a variable air volume air conditioning system for cooling applications[J]. ISA Trans, 2008,47(3) :339-349. 被引量:1
  • 8NOUSSI H, BALLYK M, BARANY E. Stabilization of chemostats using feedback linearization[ C]//46th IEEE Conference on Decision and Control. New Orleans: IEEE Press, 2007 : 677-682. 被引量:1
  • 9GE S S, SUN Z, LEE T H. Nonregular feedback linearization for a class of second-order nonlinear systems[ J]. Automatica, 2001, 37: 1819-1824. 被引量:1
  • 10CHANG W W, SMYTH D J. The existence and persistence of cycles in a nonlinear model: Kaldor's 1940 model re-examined[J]. Rev Econ Stud, 1971, 38:37-44. 被引量:1

共引文献22

同被引文献18

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部