期刊文献+

关于行列式计算的另类降阶法 被引量:4

An Alternative Reduction Method on Computing the Determinants
下载PDF
导出
摘要 由于二阶行列式的计算仅须求两对角线元素的乘积之差,所以计算非常简单.一般地,对高阶行列式求值,虽然可用Laplace展开公式或Gauss消去法,但是展开式会非常繁杂或计算量会很大.本文利用降阶原理,得到一种只需计算二阶行列式就可求出n(n≥3)阶方阵行列式值的另类方法. Because of the determinant of 2-by-2 matrix evaluation is the product of entries on the main diagonal minus the product of the other entries. Thus 2-by-2 determinant can usually be computed very simply. In general, any determinant can be calculated from the formula of Laplace expansion or elimination method of Gauss, but this involves formidable amounts of arithmetic if the dimension is at all large. In this paper, an alternative reduction method to compute the determinants of n(n ≥3) matrices by reducing their orders is given, which only involves the calculation of 2-by-2 determinant.
作者 邓勇
出处 《大学数学》 2012年第6期102-108,共7页 College Mathematics
基金 新疆维吾尔自治区高校科研计划重点项目(XJEDU2008I31)
关键词 行列式 计算 降阶 Laplace展开法 高斯消去法 determinant compute reducing order method of Laplace expansion methods of Gaussian Elimination
  • 相关文献

参考文献5

  • 1Turnbull H W. The theory of determinants, matrices, and invariants[M].3rd ed. Dover: Blackie& Son Limited Press, 1960. 被引量:1
  • 2Fuller L E and Logan J D. On the evaluation of determinants by Chi6's method [J]. College MathematicsJournal, 1975, 6(1),8-- 10. 被引量:1
  • 3北京大学数学系几何与代数教研室前代数小组,北京大学编..高等代数[M].北京:高等教育出版社,2007:432.
  • 4Bressoud, David M. Proofs and confirmations: the story of the alternating sign matrix conjecture [-M Washington: MAA Spectrum, Mathematical Associations of America, Cambridge University Press, 1999. 被引量:1
  • 5Adrian Rice and Eve Torrence. Lewis Carroll's "curious" condensation method for evaluating determinants [J] College Mathematics Journal, 2007, 38(2): 84--94. 被引量:1

同被引文献11

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部