期刊文献+

基于MAP估计和广义高斯MRF的SAR图像边缘比率检测方法(英文) 被引量:2

Ratio-Based Edge Detection for SAR Imagery Using MAP Estimation and GGMRF Modeling
下载PDF
导出
摘要 SAR图像极低的信噪比以及乘性噪声给SAR图像的边缘检测带来了较大的困难。提出了一种针对SAR图像边缘的自适应贝叶斯检测方法。该方法利用广义高斯马尔可夫随机场作为局部均值的先验概率分布模型,利用贝叶斯准则推导了局部均值的最大后验概率估计。广义高斯马尔可夫随机场模型参数估计和局部均值估计采用联合迭代技术进行求解。边缘检测器的参数采用接收机操作性能曲线和卡方检验进行选择。基于实测SAR数据的仿真实验结果表明,本文的边缘检测算子是有效的,并优于已有的SAR图像边缘检测算子。 Due to the low signal-to-noise ratios and the muhiplicative nature of speckle, edge detection is particularly difficult for synthetic aperture radar (SAR) imagery. A new spatially adaptive Bayesian method based on Markov random field (MRF) is proposed to detect edges in SAR imagery. The generalized Gaussian MRF (GGMRF) is employed as a prior distribution to develop a maximum a posteriori probability estimator for the local mean power. A method of jointly and iteratively estimating the local mean power and the hyperparameters of GGMRF model is introduced. The receiver operating characteristics analysis and Chi-square test are utilized to determine optimal parameters of the edge detector. Experiments are carried out by using real SAR images, and the results show that the proposed edge detector is effective and performs favorably in comparison with the existing popular edge detectors in most cases.
出处 《宇航学报》 EI CAS CSCD 北大核心 2012年第12期1832-1839,共8页 Journal of Astronautics
基金 国家自然科学基金(61002045)
关键词 最大后验概率估计 广义高斯马尔可夫随机场 边缘检测 合成孔径雷达 比率 Maximum a posteriori probability estimation Generalized Gaussian-Markov random field Edgedetection Synthetic aperture radar Ratio
  • 相关文献

参考文献14

  • 1Touzi R, Lopes A, Bousquet P. A statistical and geometricaledge detector for SAR images[ J]. IEEE Trans, on Geoscienceand Remote Sensing, 1988, 26,764 -773. 被引量:1
  • 2Oliver C J, Blacknell D,White R G. Optimal edge detection inSAR[J]. IEE Proc. Radar, Sonar Navig,1996,143,31 -40. 被引量:1
  • 3Fjφitoft R, Lopes A, Marthon P, et al. An optimal multiedgedetector for SAR image segmentation [ J ]. IEEE Trans, onGeoscience and Remote Sensing,1998,36,793 -802. 被引量:1
  • 4Oiler G,Marthon P,Rognant L. Edge detection and extractionfor SAR images [ C ]. Proc. Int. Conf. Geoscience and RemoteSensing Symposium,Singapore,2003 : 4004 - 4006. 被引量:1
  • 5Canugapati S S, Moloney C R. A ratio edge detector for speckledimages based on maximum strength edge pruning [ C ]. Proc. Int.Conf. Image Processing,Washington, DC, USA, 1995:165 -168. 被引量:1
  • 6Jia C L, Zhou X G, Zhao L J, et al. A modified ROEWAmethod for edge detection in SAR images[ C ]. Proc. Int. Conf.Radar,Shanghai, China,2006:1 -4. 被引量:1
  • 7Ranjani J J, Gokila M,Thiruvei^adam S J. Edge detection inspeckled SAR images with in^roved ROEWA[C]. Proc. Indian Conf.Computer Vision, Gnq)hics & Imag Processing,Bhubaneswar, India,2006:644-649. 被引量:1
  • 8Li S Z. Markov random field modeling in image analysis [ M ].London : Springer,2009. 被引量:1
  • 9Gleich D,Datcu M. Wavelet-based despeckling of SAR imagesusing gauss markov random fields [ J ]. IEEE Trans, onGeoscience and Remote Sensing,2007, 45:4127 -4143. 被引量:1
  • 10Bouman C,Sauer K. A generalized Gaussian image model foredge-preserving MAP estimation [ J ]. IEEE Trans, on ImageProcessing, 1993, 2:296-310. 被引量:1

同被引文献21

  • 1胡正磊,孙进平,袁运能,毛士艺.基于小波边缘提取和脊线跟踪技术的SAR图像河流检测算法[J].电子与信息学报,2007,29(3):524-527. 被引量:16
  • 2Lee J S, Jurkevich I. Segmentation of SAR images[J],IEEE Trans. on Geoscience and Remote Sensing,1989, 27(6) : 674 - 680. 被引量:1
  • 3Yu P, Qin A K, Clausi D A. Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty[J]. IEEE Trans, on Geoscience and Remote Sen- sing, 2012, 50(4) : 1302 - 1317. 被引量:1
  • 4Doulgeris A P, Anfinsen S N, Eltoft T. Automated non-Gaussian clustering of polarimetric synthetic aperture radar images [J]. IEEE Trans. on Geoscience and Remote Sensing, 2011, 49 (10): 3665-3676. 被引量:1
  • 5Koller D, Friedman N. Probabilistic graphical models : princi- ples and techniques[M]. Cambridge: The MIT Press, 2009. 被引量:1
  • 6Zhang L, Ji Q. Image segmentation with a unified graphical model[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2010, 32 (8) : 1406 - 1425. 被引量:1
  • 7Srinivas U, Chen Y, Monga V. Exploiting sparsity in hyperspectral image classification via graphical models[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3) : 505 - 509. 被引量:1
  • 8Frey D, Butcnuth M, Straub D. Probabilistic graphical models for flood state detection of roads combining imagery and DEM[J]. IEEE Geoscience arm Remote Sensing Letters, 2012, 9(6) : 1051 - 1055. 被引量:1
  • 9Li Y, Li J, Chapman M A. Segmentation of SAR intensity imagery with a voronoi tessellation, Bayesian inference, and re- versible jump MCMC algorithm[J]. IEEE Trans. on Geo- science and Remote Sensing, 2010, 48(4) : 1872 - 1881. 被引量:1
  • 10Zhang L, Ji Q. A Bayesian network model for automatic and interactive image segmentation [J]. IEEE Trans. on Image Processing, 2011, 20(9): 2582 - 2593. 被引量:1

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部