期刊文献+

C-Bézier曲线显式降阶算法

Algorithm for explicit multi-degree reduction of C-Bézier curves
下载PDF
导出
摘要 基于C-Bézier曲线的约束降阶逼近问题至今仍未得到很好解决,运用分而治之的方法,根据端点约束条件先确定降阶曲线的约束控制顶点;再利用最小二乘法,给出未约束控制顶点.特别地,利用C-Bézier基函数的显式表达式,给出降阶曲线的显式表示.与已有算法比较,本算法具有精度最佳、一次降多阶、显式表示、端点高阶插值等优点.数值实验验证该算法的优质高效. As the problem of degree reduction with constraints of C-Bezier curve has not been solved well till now, by the method of "divide and conquer", the constrained control points of degree-reduced curve are firstly determined according to the condition of endpoint constraints. Then the unconstrained control points are determined by least square method. In particular, the explicit expression of degree-reduced curve is presented by the explicit expression of C-B^zier basis function. Compared with the existing algo- rithms, this algorithm has some advantages such as optimal precision, doing multi-degree reduction at one time, using explicit expression, maintaining high continuity at two endpoints and so on. Numerical examples show the effectiveness of the algorithm.
作者 周联
出处 《上海海事大学学报》 北大核心 2012年第4期86-90,共5页 Journal of Shanghai Maritime University
基金 国家自然科学基金(11226327) 上海海事大学校基金(20120099)
关键词 C-BÉZIER曲线 显式表示 约束 降阶 C-Bezier curve explicit expression constraint degree reduction
  • 相关文献

参考文献10

二级参考文献47

共引文献299

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部