摘要
A structure-dependent explicit method with enhanced stability properties is proposed in this study. In general, the method offers unconditional stability for structural systems except those with a particular instantaneous stiffness hardening behavior. In addition, it is second-order accurate and displays no overshooting in high frequency responses. Numerical experiments reveal that the proposed method saves a substantial amount of computational effort in solving inertial problems where only the low frequency responses are of interest, when compared to a general second-order accurate integration method.
A structure-dependent explicit method with enhanced stability properties is proposed in this study. In general, the method offers unconditional stability for structural systems except those with a particular instantaneous stiffness hardening behavior. In addition, it is second-order accurate and displays no overshooting in high frequency responses. Numerical experiments reveal that the proposed method saves a substantial amount of computational effort in solving inertial problems where only the low frequency responses are of interest, when compared to a general second-order accurate integration method.
基金
The Science Council,Chinese Taipei Under Grant No.NSC-99-2221-E-027-029