期刊文献+

基于局部相似度的非稳态相位校正方法 被引量:9

Non-stationary phase correction based on local similarity
下载PDF
导出
摘要 针对常规的常相位校正方法无法满足非稳态相位校正的精度要求,滑动时窗常相位校正方法虽然可以在一定程度上考虑相位的非稳态特性,但是其前提是相位变化分段平稳,因此该方法的精度有限,而且难以控制时窗大小,容易产生不稳定等问题。本文将相位估计看成最小二乘反演问题,在局部地震属性的框架下,根据最大方差模和相似系数的概念,利用零相位判别准则,实现了一种基于局部相似系数的非稳态相位校正方法。相对于滑动时窗常相位校正方法,本文方法精度更高、稳定性更好。理论模型和实际资料处理表明,本文方法可以有效实现信号的零相位化,改善叠加效果,提高地震资料的分辨率。 Conventional constant phase correction is not accurate enough when processing non-stationary data.Even though non-stationarity can be taken into account by constant phase correction method combined with moving-window technology in some sense,but it has limited accuracy and is not stable because of the piecewise-stationarity assumption.Moreover,it is difficult to control the moving window size.According to zero-phase criterion,we cast the phase-estimation problem into a least-squares inverse problem and propose a non-stationary phase correction method with the concept of kurtosis and similarity maximization under the framework of local attributes.Compared with the moving-window technology,the proposed method is more accurate and more stable to process non-stationary seismic data.Synthetic and real data examples demonstrate that the proposed method can improve the quality of stack profile and enhance the resolution of seismic data after zero-phasing effectively.
出处 《石油地球物理勘探》 EI CSCD 北大核心 2012年第6期887-893,1024+838-839,共7页 Oil Geophysical Prospecting
基金 国家863课题(2010AA0603223002) 国家科技重大专项课题(2011ZX05006-004) 中国石油大学(华东)优秀博士论文培育计划项目联合资助
关键词 局部相似度 局部方差模 非稳态相位校正 最小二乘反演 局部地震属性 local similarity,local kurtosis,non-stationarity phase correction,least-squares inversion,local seismic attribute
  • 相关文献

参考文献23

  • 1李振春,王希萍,韩文功.地震数据处理中的相位校正技术综述[J].地球物理学进展,2008,23(3):768-774. 被引量:21
  • 2Levy S and Oldenhurg D W. Automatic phase correction of common-midpoint stacked data. Geophysics, 1987, 52(1) :51-59. 被引量:1
  • 3Longbottom J, Walden A T and White R E. Princi- ples and application of maximum kurtosis phase esti- mation. Geophysical Prospecting, 1988, 36 (2) : 115-138. 被引量:1
  • 4White R E. Maximum kurtosis phase correction. Geophysical Journal International, 1988, 95(2), 371- 389. 被引量:1
  • 5Wiggins R. Minimum entropy deconvolution. Geoeacploration, 1978, 16(1): 21-35. 被引量:1
  • 6Wiggins R. Entropy guided deconvolution. Geophysics, 1985, 50(12): 2720-2726. 被引量:1
  • 7Baan M V D. Acoustic wave propagation in one-dimensional random media: The wave localization ap- proach. Geophysical Journal International, 2001, 145(3): 631-646. 被引量:1
  • 8Baan M V D. Time-varying wavelet estimation and deeonvolution by kurtosis maximization. Geophysics, 2008, 73(2); V11-V18. 被引量:1
  • 9Baan M V D and Fomel S. Nonstationary phase estimarion using regularized local kurtosis maximization. Geophysics, 2009, 74(6):A75-A80. 被引量:1
  • 10Baan M V D, Perz M and Fomel S. Nonstationary phase estimation for analysis of wavelet character. EAGE Technical Program Expanded Abstracts, 2010, D020. 被引量:1

二级参考文献50

共引文献90

同被引文献250

引证文献9

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部