期刊文献+

甲型流感病毒蛋白质序列的长记忆模型

Long-Memory Model for Protein Sequences of Influenza a Virus
下载PDF
导出
摘要 基于CGR-游走模型和分数阶差分,运用时间序列模型分析甲型流感病毒。基于详细HP模型,先将甲流病毒H5N1的蛋白质序列转化成CGR时间序列,再引入长记忆ARFIMA(p,d,q)模型拟合此类序列。发现随机得到的9条H5N1的蛋白质序列都具有长相关性且拟合良好,还发现这类序列都可以用ARFIMA(1,d,1)模型加以识别。 Based on the chaos game representation walk model and the integer-order difference, this paper presents the time series model to study the influenza A virus. Based on the detailed HP model, H5N1 protein sequences are converted into the CGR time series , and the long memory ARFIMA(p,d,q) model is introduced to simulate this kind of sequences. The 9 H5N1 sequences are selected randomly to analysis. It is found that the.se sequences have remarkably long-rang correlations and fit reasonably and also uncover that ARFIMA( 1 ,d, 1 ) models are used to identify the sequences.
作者 张玲 高洁
机构地区 江南大学理学院
出处 《江南大学学报(自然科学版)》 CAS 2012年第6期727-730,共4页 Joural of Jiangnan University (Natural Science Edition) 
基金 国家自然科学基金项目(11271163)
关键词 甲型流感 蛋白质 时间序列模型 混沌游走 长记忆模型 influenza a virus, protein, time series model, CGR, ARFIMA (p,d,q) model
  • 相关文献

参考文献11

  • 1Chan H S, Dill K A. Compact polymers[ J ]. Macromolecular, 1989,22:4559- 4573. 被引量:1
  • 2Brown T A. Genetics[ M]. 3 rd. London: Chapman and Hall,1998. 被引量:1
  • 3Basu S, Pan A, Dutta C, et al. Chaos game representation of protein structures[ J]. J Mol Graphics Model,1997,15:279-289. 被引量:1
  • 4GAO Jie, XU Zhen-yuan. Chao game representation (CGR) walk model for DNA sequences [ J ]. Chinese Physics B,2009,18 ( 11 ) :370-376. 被引量:1
  • 5YU Zu-guo, Anh V V, Lau K S. Fractal analysis of measure representation of large proteins based on the detailed HP model [J]. Physiea A,2004,337:171-184. 被引量:1
  • 6YU Z G, Anh V, Lau K S. Chaos game representation of protein sequences based on the detailed HP model and their muhifractal and correlation analyses [ J ]. Journal of Theoretical Biology ,2004,226 : 341-348. 被引量:1
  • 7刘娟,高洁.甲型流感病毒DNA序列的长记忆ARFIMA模型[J].物理学报,2011,60(4):783-788. 被引量:5
  • 8王燕编著..应用时间序列分析[M].北京:中国人民大学出版社,2005:262.
  • 9常学将等编著..时间序列分析[M].北京:高等教育出版社,1993:536.
  • 10Akaike H. A new look at statistical model identification[ J]. IEEE Transaction on Automatics Control, 1974,19:9-14. 被引量:1

二级参考文献21

  • 1Morens D, Folkers G, Fauci A 2004 Nature 430 242. 被引量:1
  • 2Chen J M, Sun Y X, Liu S 2009 Chinese Science Bulletin 54 1657 (in Chinese). 被引量:1
  • 3Webster R G, Bean W J, Gorman O T 1992 Microbiol Rev. 56 152. 被引量:1
  • 4Shi X M, Shi L, Zhang J F 2010 Chin. Phys. B 19 038701. 被引量:1
  • 5Peng C K, Buldyrev S, Goldberg A L, Havlin S, Sciortino F, Simons M, Stanley H E 1992 Nature 356 168. 被引量:1
  • 6Voss R F 1992 Phys. Rev. Lett. 68 3805. 被引量:1
  • 7Buldyrev S V, Goldberger A L, Havlin S, Peng C K, Simon M, Stanley H E 1993 Phys. Rev. E 47 4514. 被引量:1
  • 8Buldyrev S V, Goldberger A L, Havlin S, Mantegna R N, Matsa ME, Peng C K, Simon M, Stanley H E 1995 Phys. Rev. E 51 5084. 被引量:1
  • 9Tai Y Y, Li P C, Tseng H C 2006 Physica A 369 688. 被引量:1
  • 10Luo L F, Lee W J, Jia L J, Ji F M, Tsai L 1998 Phys. Rev. E 58 861. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部