期刊文献+

并行磁共振图像的非二次正则化保边性重建 被引量:1

Non-quadratic regularized edge-preserving reconstruction for parallel magnetic resonance image
下载PDF
导出
摘要 针对并行磁共振在欠采样率较高情况下重建图像存在的混迭伪影和噪声问题,提出一种非二次正则化的保边性图像重建算法.基于SENSE技术,该算法以保边平滑性的非二次凸函数为正则化项,构建一个非二次代价函数,并运用非线性共轭梯度算法求解该最小化问题,实现并行磁共振图像的保边性重建.为了评价算法的有效性和鲁棒性,以归一化均方误差作为评价准则,分析并行磁共振欠采样率最大时真实数据和仿真数据的图像重建.结果表明,该算法显著减少欠采样率较高时并行磁共振图像的混迭伪影,并能够有效抑制噪声和保留边缘信息.相比于其他图像重建算法,该算法能够快速收敛. Aiming at the images of poor quality resulted from the aliasing artifacts and noise in parallel magnetic resonance imaging,which was reconstructed from high reduction undersampling sensitivity-encoding data,a non-quadratic regularized edge-preserving reconstruction algorithm was proposed.Based on Sensitivity Encoding technique,the algorithm used an edge-preserving non-quadratic convex function as the regularization term,and then a non-quadratic cost function was constructed.Using nonlinear conjugate gradient method,reconstruction image was obtained by minimizing the objective function.In order to evaluate the robust and validity of the proposed algorithm,analysis on severe undersampling data was presented and discussed.Based on the analysis indicator known as normalized mean squared error,the results show that for high acceleration factors,the proposed algorithm evidently reduces the aliasing artifacts in the reconstruction images,and noise is effectively restrained as well as edge information is preserved.Furthermore,the proposed algorithm can be quick convergence.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第11期2044-2051,共8页 Journal of Zhejiang University:Engineering Science
基金 国家"973"重点基础研究发展规划资助项目(2009CB320804) 国家自然科学基金资助项目(61272304) 国家青年科学基金资助项目(30900332) 广东省教育部产学研结合资助项目(2010B090400193 2011B090400546)
关键词 并行磁共振成像 敏感性编码 非线性共轭梯度 保边性重建 非二次凸函数 parallel magnetic resonance imaging sensing encoding nonlinear conjugate gradient edge-preserving reconstruction non-quadratic convex function
  • 相关文献

参考文献24

  • 1PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B, et al. SENSE: sensitivity encoding for fast MRI [J]. Magnetic Resonance in Medicine, 1999, 42 (5):952 - 962. 被引量:1
  • 2GRISWOLD M A, JAKOB P M, HEIDEMANN R M, et al. Generalized autocalibrating partially parallel acqui- sitions (GRAPPA)[J]. Magnetic Resonance in Medi- cine, 2002, 47(6) : 1202 - 1210. 被引量:1
  • 3MCKENZIE C A, YEH E N, OHLIGER M A, et al. Self-calibrating parallel imaging with automatic coil sen- sitivity extraction [J]. Magnetic Resonance in Medicine, 2002, 47(3): 529-538. 被引量:1
  • 4HANSEN P C. Rank-deficient and discrete Ill-posed problems: numerical aspects of linear inversion [M]. SI- AM Monographs on Mathematical Modeling and Com- putation, philadetphia: SIAM, 1997 :1 - 16. 被引量:1
  • 5RIBES A, SCHMITT F. Linear inverse problems in im- aging: An introductory survey [J]. IEEE Signal Process- ing Magazine, 2008,25(4) :84 - 99. 被引量:1
  • 6LIANG Z P, BAMMER R, JI J, et al. Making better SENSE: wavelet de-noising, Tikhonov regularization, and total-least squares [C]// Processing of the 10 th An- nual Meeting of ISMRM, Honolulu. HI: ISMRM, 2002: 2388. 被引量:1
  • 7OMER H, DICKINSON R. Regularization in parallel MR image reconstruction[J]. Concepts in Magnetic Resonance Part A, 2011, 38A(2) : 52 - 60. 被引量:1
  • 8LIN F H, WANG F N, AHLFORS S P, et al. Parallel MRI reconstruction using variance partitioning regulari- zation [J].Magnetic Resonance in Medicine, 2007, 58 (4) : 735 - 744. 被引量:1
  • 9RAJ A, SINGH G, ZABIH R, et al. Bayesian parallel imaging with edge-preserving priors[J]. Magnetic Reso- nance in Medicine, 2007, 57(1) : 8 - 21. 被引量:1
  • 10DONOHO D L. Compressive sensing[J]. IEEE Trans. on Information Theory, 2006, 52(4) : 1289 - 1306. 被引量:1

同被引文献15

  • 1CARLSON J W. An algorithm for NMR imaging recon- struction based on multiple RF receiver coils [J]. Jour- nal of Magnetic Resonance, 1987, 74(2) : 376 - 380. 被引量:1
  • 2SODICKSON acquistion of imaging with D K, MANNING W J. Simultaneous spatial harmonics (SMASH) : ultra-fast radiofrequency coil arrays [J]. MagneticResonance in Medicine, 1997, 38(4) : 591 - 603. 被引量:1
  • 3GRISWOLD M A, JAKOB P M, HEIDEMAN R M. Generalized autocalibrating partiauy parallel acquisitions ( GRAPPA ) [J]. Magnetic Resonance in Medicine, 2002, 47(6) : 1202- 1210. 被引量:1
  • 4GRISWOLD M A, JAKOB P M, NITTKA M. Partially parallel imaging with localized sensitivities (PILS) [J]. Magnetic Resonance in Medicine, 2000, 44(4) : 602 - 609. 被引量:1
  • 5PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B. SENSE: sensitivity encoding for fast MRI [J]. Magnetic Resonance in Medicine, 1999, 42(5) : 952 - 962. 被引量:1
  • 6KYRIAKOS W E, PANYCH L P, KACHER D F. Sensitivity profiles from an array of coils for encoding and reconstruction in parallel (SPACE RIP) [J]. Mag- netic Resonance in Medicine, 2000, 44(2) : 301 - 308. 被引量:1
  • 7MCKENZIE C A, YEH E N, OHLIGER M A. Self- calibrating parallel imaging with automatic coil sensitivi- ty extraction [J ]. Magnetic Resonance in Medicine, 2002, 47(3): 529-538. 被引量:1
  • 8BRUNO M. UNFOLD-SENSE: a parallel MRI method with self-calibration and artifact suppression [J]. Mag- netic Resonance in Medicine, 2004, 52(2): 310 -320. 被引量:1
  • 9YING L L, SHENG J H. Joint image reconstruction and sensitivity estimation in SENSE (JSENSE) [J]. Magnetic Resonance in Medicine, 2007, 57 ( 6 ): 1196 - 1202. 被引量:1
  • 10CHANG Y C, LIANG D, YING L L. Nonlinear GRAPPA: a kernel approach to parallel MRI recon- struction [J]. Magnetic Resonance in Medicine, 2012, 68(3) : 730 - 740. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部