期刊文献+

太阳能槽式系统反射镜玻璃厚度对聚光特性的影响 被引量:16

Influence of Glass Thickness of Reflector on the Concentrating Characteristics in the Solar-Energy Trough System
原文传递
导出
摘要 针对太阳能槽式系统反射镜玻璃厚度对聚光特性的影响进行了理论、模拟和实验研究。研究结果表明,平行光下反射镜玻璃越厚,入射光线距光轴距离越远,ΔX、ΔY越大。对焦距为1200mm,反射镜玻璃折射率为1.6的槽式系统进行了理论计算,玻璃厚度为1 mm的反射镜,当距光轴距离为200 mm和2000 mm时,ΔX为0.03mm和1.69mm,ΔY为0.19mm和0.31mm;当距光轴距离仍为2000mm时,玻璃厚度为5mm的反射镜,ΔX为8.41mm,ΔY为1.55mm。通过TracePro模拟以及实际实验测量,结果与理论计算相符。 The concentrating characteristics with the glass thickness of reflector of the solar parabolic trough system are studied by theoretical analysis, simulation, and experiments. The results show that the thicker glass of the reflector and the farther distance of the incident light from the optical axis, the bigger both △X and △y are. The theoretical analysis has been done for the solar parabolic trough system whose focal length is 1200 mm, and the refractive index of glass of reflector is 1.6. For l-ram thickness glass of reflector, when the distance from the optical axis of the incident light is 200 mm and 2000 mm respectively, △X is 0.03 mm and 1.69 mm respectively, △y is 0.19 mm and 0.31 mm respectively. For 5-ram thickness glass of reflector, when the distance from the optical axis of the incident light still is 2000 mm, △X is 8.41 mm, and △Y is 1.55 mm. The theoretical analysis is consistent with TracePro simulation and experiments. The research can provide references to further design of solar parabolic trough system.
出处 《光学学报》 EI CAS CSCD 北大核心 2012年第12期104-108,共5页 Acta Optica Sinica
基金 国家自然科学基金(51106134) 国家自然科学基金云南联合基金重点项目(U1137605)资助课题
关键词 光学器件 太阳能 槽式聚光 厚度 特性 optical devices solar energy trough concentrating thickness characteristic
  • 相关文献

参考文献13

  • 1王富强,帅永,谈和平.腔式太阳能吸热器的热分析[J].工程热物理学报,2011,32(5):843-846. 被引量:16
  • 2C. S. Solanki, C. S. Sangani, D. Gunashekar et al.. Enhanced heat dissipation of V-trough PV modules for better performance [J]. Solar Energy Materials and Solar Cells, 2008, 92(12): 1634-1638. 被引量:1
  • 3Tao Tao, Zheng Hongfei, He Kaiyan et al.. A new trough solar concentrator and its performance analysis [J]. Solar Energy, 2011, 85(1): 198-207. 被引量:1
  • 4A. F. García, E. Zarza, L. Valenzuela et al.. Parabolic-trough solar collectors and their applications [J]. Renewable and Sustainable Energy Reviews, 2010, 14(7): 1695-1721. 被引量:1
  • 5He Yaling, Xiao Jie, Cheng Zedong et al.. A MCRT and FVM coupled simulation method for energy conversion process in parabolic trough solar collector [J]. Renewable Energy, 2011, 36(3): 976-985. 被引量:1
  • 6Gong Guangjie, Huang Xinyan, Wang Jun et al.. An optimized model and test of the China′s first high temperature parabolic trough solar receiver [J]. Solar Energy, 2010, 84(12): 2230-2245. 被引量:1
  • 7江守利..反射聚光利用太阳能的基础理论与实验研究[D].中国科学技术大学,2009:
  • 8J. Coventry. A Solar Concentrating Photovoltaic/Thermal Collector [D]. Canberra:Australian National University, 2004. 101-138. 被引量:1
  • 9崔映红,卑振华,赵熙.抛物面槽式太阳能集热器场热损失分析[J].可再生能源,2010,28(5):5-9. 被引量:11
  • 10帅永, 张晓峰, 谈和平. 抛物面式太阳能聚能系统聚光特性模拟 [J]. 工程物热理学报, 2006, 27(3): 484-486. 被引量:2

二级参考文献20

  • 1Thomas M, Peter H. Dish-Stirling Systems: An Overview of Development and Status [J]. Journal of Solar Energy Engineering, 2003, 125(5): 135-151. 被引量:1
  • 2霍志臣.高效太阳能斯特林机.太阳能,(2):30-31. 被引量:1
  • 3John S G. Handbook of Solar Simulation for Thermal Vacuum Testing [M]. Institute of Environmental Sciences, IL, USA, 1968:Sect3-6. 被引量:1
  • 4Petrasch J, Coray P, Meier A, et al A Novel 50 kW 11,000 Suns High-Flux Solar Simulator Based on an Array of Xen-on Arc Lamps [J]. Journal of Solar Energy Engineering, 2007, 129(4): 405-411. 被引量:1
  • 5Kuhn P, Hunt A. A New Solar Simulator to Study High Temperature Solid-State Reactions with Highly Concentrated Radiation [J.] Solar Energy Materials, 1991, 24: 742-750. 被引量:1
  • 6Ulmer S, Reinalter W, Heller P, et al. Beam Characterization and Improvement with a Flux Mapping System for Dish Concentrators [J]. Journal of Solar Energy Engineering, 2002, 124(2): 182-188. 被引量:1
  • 7LI Xin, KONG Weiqiang, WANG Zhifeng, et ah Thermal Model and Thermaldynamic Performance of Molten Salt Cavity Receiver [J]. Renewable Energy, 2010, 35:981-988. 被引量:1
  • 8Prakash M, Kedare S B, Nayak J K. Investigations on Heat Losses from a Solar Cavity Receiver [J]. Solar En- ergy, 2009, 83:157-70. 被引量:1
  • 9Kumar N S, Reddy K S. Comparison of Receivers for Solar Dish Collector System [J]. Energy Conversion and Man- agement, 2008, 49:812-19. 被引量:1
  • 10QIN Y F, Kuba S, Naknishi N. Coupled Analysis of Ther- mal Flow and Thermal Stress of an Engine Exhaust Man- ifold [R]. SAE Technical Paper, 2004, 2004:471-1345. 被引量:1

共引文献26

同被引文献207

引证文献16

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部