期刊文献+

比值导数法矿物组分光谱解混模型研究 被引量:10

Research on the Model of Spectral Unmixing for Minerals Based on Derivative of Ratio Spectroscopy
下载PDF
导出
摘要 矿物丰度含量的精确分析是高光谱遥感技术定量分析中的难点。将化学领域的比值导数光谱算法进行总结,将其引入遥感反射率光谱分析,提出了基于线性光谱混合模型的比值导数光谱解混模型,并利用石膏和绿帘石粉末混合物进行了模型的精度分析。实验结果表明,矿物粉末混合物在不同波段其光谱混合特性有所不同,其中部分波段有较强的线性混合特征。采用部分强线性混合波段进行光谱解混,可以取得比全波段解混算法更好的结果。比值导数法光谱解混模型简洁,可以得到高精度的矿物成分反演结果,对于固定端元组成的混合光谱定量分析有较大潜力。 The precise analysis of mineral abundance is a key difficulty in hyperspectral remote sensing research.In the present paper,based on linear spectral mixture model,the derivative of ratio spectroscopy(DRS) was introduced for spectral unmixing of visible to short-wave infrared(Vis-SWIR;0.4~2.5 μm) reflectance data.The mixtures of different proportions of plaster and allochite were analyzed to estimate the accuracy of the spectral unmixing model based on DRS.For the best 5 strong linear bands,the Pearson correlation coefficient(PCC) of the abundances and the actual abundances were higher than 99.9%,while the root mean square error(RMSE) is less than 2.2%.The result shows that the new spectral unmixing model based on DRS is simple,of rigorous mathematical proof,and highly precise.It has a great potential in high-precision quantitative analysis of spectral mixture with fixed endmembers.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第1期172-176,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(41072248 41272364) 国家重点基础研究发展计划(2010CB434800)资助
关键词 高光谱 光谱解混 比值导数法 线性光谱混合模型 Hyperspectral Spectral unmixing Derivative of ratio spectroscopy Linear mixture model
  • 相关文献

参考文献19

  • 1van der Meero F, Bakker W. Remote Sensing o{ Environment, 1997, 61(3): 371. 被引量:1
  • 2Clark R N, Swayze G A, LivoK E, et al. J. Geophys. Res., 2003, 108(E12): 5. 被引量:1
  • 3童庆禧,张兵,郑兰芬.高光谱遥感一原理、技术与应用.北京:高等教育出版社,2006. 被引量:3
  • 4张良培,张立福.高光谱遥感.北京:测绘出版社,2011. 被引量:1
  • 5Keshava N, Mustard J F. Signal Processing Magazine, IEEE, 2002, 19(1): 44. 被引量:1
  • 6Johnson P E, Smith M O, Taylor-George S, et al. Journal of Geophysical Research, 1983, 88(B4) : 3557. 被引量:1
  • 7Mustard J F, Li L, He G. Journal of Geophysical Research, 1998, 103: 19419. 被引量:1
  • 8Hapke B. Journal o{ Geophysical Research, 1981, 86(NB4): 3039. 被引量:1
  • 9Hapke B. Theory of Reflectance and Emittance Spectroscopy, by Bruce Hapke, pp. 469. ISBN 0521619270. Cambridge, UK Cambridge University Press, February 2005. , 2005, 1. 被引量:1
  • 10Johnson P E, Smith M O, Adams J B. Journal of Geophysical Research, 1992, 97(E2) : 2649. 被引量:1

二级参考文献46

  • 1李加洪,秦勇.应用分形几何学与小波理论对成像光谱数据进行地物识别的模型研究[J].遥感技术与应用,1996,11(1):1-6. 被引量:3
  • 2王晋年,郑兰芬,童庆禧.成象光谱图象光谱吸收鉴别模型与矿物填图研究[J].环境遥感,1996,11(1):20-31. 被引量:63
  • 3寸珪,陈纪明.中国典型金矿床[M].北京:地质出版社,1995. 被引量:1
  • 4Boardman J W.Automating Spectral Unmixing of AVIRIS Data using Convex Geometry Concepts[A].Summaries of the Forth Annual JPL Airborne Earth Science Workshop[C].JPL Published,1993. 被引量:1
  • 5Winter M E.N-FINDR:an Algorithm for Fast Autonomous Spectral End-member Determination in Hyperspectral Data[A].Proceedings of SPIE Imaging Spectrometry[C].1999. 被引量:1
  • 6Nascimento J M P,Dias J M B.Vertex Component Analysis:A Fast Algorithm to Unmix Hyperspectral Data[J].IEEE Trans.Geosci.Remote Sensing,2005,43(4):898-910. 被引量:1
  • 7Craig M D.Minimum-Volume Transform for Remotely Sensed Data[J].IEEE Trans.Geosci.Remote Sens.,1994,32(3):542-551. 被引量:1
  • 8Bateson C A,Asner G P,Wessman C A.Endmember Bundles:A New Approach to Incorporation Endmember Variability into Spectral Mixture Analysis[J].IEEE Trans.Geosci.Remote Sensing,2000,38(2):1083-1094. 被引量:1
  • 9Plaza A P,Martinez,et al.Spatial/spectral Endmember Extraction by Multidimensional Morphological Operations[J].IEEE Trans.Geosci.Remote Sensing,2002,40(9):2025-2041. 被引量:1
  • 10Nascimento J M P.Does Independent Component Analysis Play a Role in Unmixing Hyperspectral Data?[J].IEEE Trans.Geosci.Remote Sensing,2005,40(1):175-187. 被引量:1

共引文献53

同被引文献103

引证文献10

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部